Plant Systematics and Evolution

, Volume 206, Issue 1–4, pp 161–174 | Cite as

Diverted development of reproductive organs: A source of morphological innovation in land plants

  • Peter R. Crane
  • Paul Kenrick
Article

Abstract

Recent discussions of animal development, particularly at the level of molecular genetics, have emphasized modularity, dissociation and co-option as basic principles of evolutionary developmental biology. These concepts are discussed in relation to two specific structural innovations in land plant evolution: the leaves (microphylls) of lycopsids, and the interseminal scales ofBennettitales. Both structures appear to have been derived evolutionarily by the diverted development of reproductive organs. In the case of lycopsids, recent analyses of phylogenetic relationships suggest that leaves are sterilized sporangia modified for photosynthetic assimilation. In the case ofBennettitales, structural data suggest that the interseminal scales are sterilized “cupules” modified for protection of the ovules. In both cases, multiplication of reproductive organs seems to have accentuated functional redundancy, and together with the developmental autonomy (dissociation) already inherent in the modular construction of plants, appears to have facilitated sterilization and co-option of some of these structures for new purposes. Numerous other examples in plants illustrate the same principles.

Key words

Lycopsids Bennettitales angiosperms Morphological innovation sterilization modularity dissociation co-option 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bateman, R. M., 1992: Morphogenetic reconstruction, palaeoecology and phylogeny ofOxroadia gracilis.Alvin emend., andO. coniferata sp. nov.: anatomically preserved lycopods from Oxroad Bay, SE Scotland. — PalaeontographicaB228: 29–103.Google Scholar
  2. —, 1994: Evolutionary-developmental change in the growth architecture of fossil rhizomorphic lycopods: scenarios constructed on cladistic foundations. — Biol. Rev.69: 527–598.Google Scholar
  3. —, 1994: Saltational evolution of form in vascular plants: a neoGoldschmidtian synthesis. — InIngram, D. S., Hudson, S., (Eds): Shape and form in plants and fungi, pp. 62–100. — London: Academic Press.Google Scholar
  4. Benson, M., 1904:Telangium scotti, a new species ofTelangium (Calymmatotheca) showing structure. — Ann. Bot.18: 161–177.Google Scholar
  5. Bonamo, P. M., Banks, H. P., Grierson, J. D., 1988:Leclercqia, Haskinsia, and the role of leaves in the delineation of Devonian lycopod genera. — Bot. Gaz.149: 222–239.Google Scholar
  6. Bower, F. O., 1890: On antithetic as distinct from homologous alternation of generations in plants. — Ann. Bot.4: 347–370.Google Scholar
  7. —, 1894a: Studies in the morphology of spore-producing members:Equisetineae andLycopodineae. — Philos. Trans. Roy. Soc. LondonB185: 473–572.Google Scholar
  8. —, 1894b: A theory of the strobilus in archegoniate plants. — Ann. Bot.8: 343–365.Google Scholar
  9. —, 1904: Studies in the morphology of spore-producing members. V. General comparisons and conclusions. — Philos. Trans. Roy. Soc. LondonB196: 191–257.Google Scholar
  10. —, 1908: The origin of a land flora. — London: Macmillan.Google Scholar
  11. —, 1935: Primitive land plants. — London: Macmillan.Google Scholar
  12. Crane, P. R., 1985: Phylogenetic analysis of seed plants and the origin of angiosperms. — Ann. Missouri Bot. Gard.72: 716–793.Google Scholar
  13. —, 1988: Major clades and relationships in the “higher” gymnosperms. — InBeck, C. B., (Ed): Origin and evolution of gymnosperms, pp. 218–272. — New York: Columbia University Press.Google Scholar
  14. —, 1990: The phylogenetic context of microsporogenesis — InBlackmore, S., Knox, R. B., (Eds): Microspores: evolution and ontogeny, pp. 11–41. — London: Academic Press.Google Scholar
  15. De Beer, B., 1930: Embryology and evolution. — Oxford: Clarendon Press.Google Scholar
  16. Delevoryas, T., 1968: Some aspects of cycadeoid evolution. — Bot. J. Linn. Soc. London61: 137–146.Google Scholar
  17. Drinnan, A. N., Crane, P. R., Hoot, S., 1994: Patterns of floral evolution in the early diversification of non-magnoliid dicotyledons (eudicots). — Pl. Syst. Evol., Suppl.8: 93–122.Google Scholar
  18. Doyle, J. A., 1978: Origin of angiosperms. — Annu. Rev. Ecol. Syst.9: 365–392.Google Scholar
  19. Endress, P. K., 1984: The role of inner staminodes in the floral display of some relicMagnoliales. — Pl. Syst. Evol.146: 269–282.Google Scholar
  20. —, 1994: Diversity and evolutionary biology of tropical flowers. — Cambridge: Cambridge University Press.Google Scholar
  21. Ehrendorfer, F., 1977: New ideas about the early differentiation of angiosperms. — Pl. Syst. Evol., Suppl.1: 227–234.Google Scholar
  22. —, 1989: The phylogenetic position of theHamamelidae. — InCrane, P. R., Blackmore, S., (Eds): Evolution, systematics and fossil history of theHamamelidae. 1: pp. 1–17. — Oxford: Clarendon Press.Google Scholar
  23. Fairon-Demaret, M., 1978:Estinnophyton graciles gen. et sp. nov., a new name for specimens previously determinedProtolepidodendron wahnbachense Kräusel andWeyland from the Siegenian of Belgium. — Bull. Acad. Roy. Belgique, classe des sciences64: 597–609.Google Scholar
  24. —, 1979:Estinnophyton wahnbachense (Kräusel etWeyland) comb., nov. une plante remarquable du Siegenian d'Alemagne. — Rev. Palaeobot. Palynol.28: 145–160.Google Scholar
  25. Friedman, W. E., 1995: Organismal duplication, inclusive fitness theory, and altruism: understanding the evolution of endosperm and the angiosperm reproductive system. — Proc. Natl. Acad. Sci. USA92: 3913–3917.PubMedGoogle Scholar
  26. Gifford, E. M., Foster, A. S., 1989: Morphology and evolution of vascular plants. 3rd edn. — New York: Freeman.Google Scholar
  27. Goebel, K., 1887: Outlines of classification and special morphology of plants. — Translated byGarnsey, H. E. D., Balfour I. A. — Oxford: Clarendon Press.Google Scholar
  28. Gould, S. J., 1977: Ontogeny and phylogeny. — Cambridge, Mass.: Harvard University Press.Google Scholar
  29. Harris, T. M., 1926: The Rhaetic flora of Scoresby Sound East Greenland. — Medd. Gronland68(2): 45–147.Google Scholar
  30. —, 1932: The fossil flora of Scoresby Sound East Greenland. 3 —Caytoniales andBennettitales. — Medd. Gronland85(5): 1–133.Google Scholar
  31. —, 1969: The Yorkshire Jurassic Flora. III.Bennettitales. — London: British Museum (Natural History).Google Scholar
  32. Harvey-Gibson, R. J., 1896: Contributions towards a knowledge of the anatomy of the genusSelaginella Spr. — Ann. Bot.10: 77–88.Google Scholar
  33. Jacob, F., 1977: Evolution and tinkering. — Science196: 1161–1166.PubMedGoogle Scholar
  34. Kenrick, P., Crane, P. R., 1997: The origin and early diversification of land plants: a cladistic study. — Smithsonian Series in Comparative Evolutionary Biology. — Washington: Smithsonian University Press (in press).Google Scholar
  35. Lauder, G., 1981: Form and function: structural analysis in evolutionary morphology. — Paleobiology7: 430–432.Google Scholar
  36. Li, Cheng-Sen, Edwards, D., 1992: A new genus of early land plants with novel stobilar construction from the Lower Devonian Posongchong formation, Yunnan Province, China. — Palaeontology35: 257–272.Google Scholar
  37. McKinney, M. L., McNamara, K. J., 1991: Heterochrony: the evolution of ontogeny. — New York: Plenum Press.Google Scholar
  38. Pedersen, K. R., Crane, P. R., Friis, E. M., 1989: The morphology and phylogenetic significance ofVardekloeftia Harris (Bennettitales). — Rev. Palaeobot. Palynol.60: 7–24.Google Scholar
  39. Raff, R., 1996: The shape of life: genes, development and the evolution of animal form. — Chicago: University of Chicago Press.Google Scholar
  40. Raven, P. H., Evert, R. F., Eichhorn, S. E., 1992: Biology of plants. 5th edn. — New York: Worth.Google Scholar
  41. Rieppel, O., 1990: Ontogeny — a way forward for systematics, a way backward for phylogeny. — Biol. J. Linn. Soc.39: 177–191.Google Scholar
  42. Seward, A. C., 1912: A petrifiedWilliamsonia from Scotland. — Philos. Trans. Roy. Soc. London203: 101–126.Google Scholar
  43. —, 1917: Fossil plants. III.Pteridospermae, Cycadofilices, Cordaitales, Cycadophyta. — Cambridge: Cambridge University Press.Google Scholar
  44. Schweitzer, H.-J., 1980: ÜberDrepanophycus spinaeformis Goeppert. — Bonner Paläobot. Mitteil.7: 1–29.Google Scholar
  45. Stebbins, G. L., 1974: Flowering plants: evolution above the species level. — Cambridge, Mass.: Harvard University Press.Google Scholar
  46. —, 1981: Why are there so many species of flowering plants? — Bioscience31: 573–577.Google Scholar
  47. Stewart, W. N., Rothwell, G. W., 1993: Paleobotany and the evolution of plants. 2nd edn. — Cambridge: Cambridge University Press.Google Scholar
  48. Stopes, M. C., 1918: New Bennettitean cones from the British Cretaceous. — Philos. Trans. Roy. Soc. London, Ser.B 208: 389–440.Google Scholar
  49. Takhtajan, A., 1969: Flowering plants: origin and dispersal. — Edinburgh: Oliver & Boyd.Google Scholar
  50. Turner, J. J., 1924: Origin and development of vascular system ofLycopodium lucidulum. — Bot. Gaz.78: 215–225.Google Scholar
  51. Wagner, G. P., 1996: Homologues, natural kinds and the evolution of modularity. — Amer. Zoologist36: 36–43.Google Scholar
  52. Walker, J. W., Walker, A. G., 1984: Ultrastructure of Lower Cretaceous angiosperm pollen and the origin and early evolution of flowering plants. — Ann. Missouri Bot. Gard.71: 464–521.Google Scholar
  53. Walton, J., 1964: On the morphology ofZosterophyllum and some other early Devonian plants. — Phytomorphology14: 155–160.Google Scholar
  54. Wieland, G. R., 1906: American fossil cycads.1, structure. Publ. — Carnegie Institution, Washington34(2): 1–277.Google Scholar
  55. Zimmermann, W., 1952: Main results of the “Telome Theory”. — Palaeobot.1: 456–470.Google Scholar
  56. —, 1965: Die Telomtheorie. — Stuttgart: G. Fischer.Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Peter R. Crane
    • 1
  • Paul Kenrick
    • 2
  1. 1.Department of GeologyThe Field MuseumChicagoUSA
  2. 2.Department of PalaeobotanySwedish Museum of Natural HistoryStockholmSweden

Personalised recommendations