Advertisement

Journal of Chemical Ecology

, Volume 9, Issue 1, pp 159–180 | Cite as

Chemical defense of a rove beetle (Creophilus maxillosus)

  • Martin Jefson
  • Jerrold Meinwald
  • Stephen Nowicki
  • Karen Hicks
  • Thomas Eisner
Article

Abstract

The abdominal defensive glands ofC. maxillosus secrete a mixture (70μg/beetle) of isoamyl alcohol (I), isoamyl acetate (II), iridodial (III), actinidine (IV), dihydronepetalactone (VE), and (E)-8-oxocitronellyl acetate (X). When disturbed, the beetle everts the glands and revolves the abdomen so as to wipe the glands against the offending agent. Fecal fluid is commonly emitted at the same time and may become added to the glandular material. Ants (Formica exsectoides) are effectively fended off by the beetle and were shown in bioassays (Monomorium destructor) to be repelled by the four major components of the secretion (II, III, X, VE); the principal component (VE) was the most active. Some anatomical features of the glands are described.

Key words

Coleoptera Staphylinidae Creophilus maxillosus defensive secretion ant repellent bioassay isoamyl acetate isoamyl alcohol iridodial actinidine dihydronepetalactone (E)-8-oxocitronellyl acetate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellas, T.E., Brown, W.V., andMoore, B.P. 1974. The alkaloid actinidine and plausible precursors in defensive secretions of rove beetles.J. Insect Physiol. 20:277–280.Google Scholar
  2. Bettini, S. (ed.). 1978. Arthropod Venoms. Handbook of Experimental Pharmacology, Vol.48. Springer-Verlag, Berlin.Google Scholar
  3. Blum, M.S., Crewe, R.M., andPasteels, J.M. 1971. Defensive secretion ofLomechusa strumosa, a myrmecophilous beetle.Ann. Entomol. Soc. Am. 64:975–976.Google Scholar
  4. Boch, R., Shearer, D.A., andStone, B.C. 1962. Identification ofiso-amyl acetate as an active compound in the sting pheromone of the honey bee.Nature 195:1018–1020.PubMedGoogle Scholar
  5. Brand, J.M., Blum, M.S., Fales, H.M., andPasteels, J.M. 1973. The chemistry of the defensive secretion of the beetle,Drusilla canaliculata.J. Insect. Physiol. 19:369–382.Google Scholar
  6. Clark, K., Fray, G.I., Jaeger, R.H., andRobinson, R. 1959. Synthesis ofd- andl-iso- iridomyrmecin and related compounds.Tetrahedron 6:217–224.Google Scholar
  7. Eisner, T. 1960. Defense mechanisms of arthropods. II. The chemical and mechanical weapons of an earwig.Psyche 67:62–70.Google Scholar
  8. Eisner, T. 1964. Catnip: Its raison d'être.Science 146:1318–1320.PubMedGoogle Scholar
  9. Eisner, T. 1970. Chemical defense against predation in arthropods, pp. 157–217,in E. Sondheimer, and J.B. Simeone (eds.). Chemical Ecology. Academic Press, New York.Google Scholar
  10. Eisner, T., andMeinwald, Y.C. 1965. Defensive secretion of a caterpillar (Papilio).Science 150:1733–1735.Google Scholar
  11. Eisner, T., andMeinwald, J. 1966. Defensive secretion of arthropods.Science 153:1341–1350.Google Scholar
  12. Eisner, T., Meinwald, J., Monro, A., andGhent, R. 1961. Defense mechanisms of arthropods—I. The composition and function of the spray of the whip-scorpion,Mastigoproctus giganteus (Lucas) (Arachnida, Pedipalpida).J. Insect Physiol. 6:272–298.Google Scholar
  13. Eisner, T., Kluge, A.F., Carrel, J.E., andMeinwald, J. 1971. Defense of phalangid: liquid repellent administered by leg dabbing.Science 173:650–652.Google Scholar
  14. Eisner, T., Hill, D., Goetz, M., Jain, S., Alsop, D., Camazine, S., andMeinwald, J. 1981. Antifeedant action ofZ-dilhydromatricaria acid from soldier beetles (Chauliognathus spp.)J. Chem. Ecol. 7:1149–1158.Google Scholar
  15. Ficini, J., andDangelo, J. 1976. Synthese de la (±)isodihydronepetalactone et de deux de ses diastereoisomers.Tetrahedron Lett. 1976:687–690.Google Scholar
  16. Grant, H.G., O'Regan, P.J., Park, R.J., andSutherland, M.D. 1980. Terpenoid chemistry XXIV. (1.R)-1-methoxymyodesert-3-ene, an iridoid constituent ofMyoporum deserti (Myoporaceae).Aust. J. Chem. 33:853–878.Google Scholar
  17. Heller, S.R., andMilne, G.W.A. 1978. EPA/NIH Mass Spectral Data Base, Vol. 1. U.S. Government Printing Office, Washington, D.C.Google Scholar
  18. Jenkins, M.F. 1957. The morphology and anatomy of the pygidial glands ofDianus coerulescens Gyllenhal (Coleoptera: Staphylinidae).Proc. Entomol. Soc. London 32A:159–168.Google Scholar
  19. Kolbe, W., andProske, M.G. 1973.Iso-valeriansäure im Abwehrsekret vonZyras humeralis Grav. (Coleoptera, Staphylinidae).Entomol. Blätter 69:57–60.Google Scholar
  20. Meinwald, J. 1954. The degradation of nepetalactone.J. Amer. Chem. Soc. 76:4571–4573.Google Scholar
  21. Meinwald, J., Jones, T.H., Eisner, T., andHicks, K. 1977. New methylcyclopentanoid terpenes from the larval defensive secretion of a chrysomelid beetle (Plagiodera versicolora).Proc. Natl. Acad. Sci. U.S.A. 74:2189–2192.PubMedGoogle Scholar
  22. Nakanishi, K., Goto, T., Ito, S., Natori, S., andNozoe, S. (eds.). 1974. Natural Products Chemistry, Vol. 1. Academic Press, New York, pp. 48–59.Google Scholar
  23. Noirot, C., andQuennedey, A. 1974. Fine structure of insect epidermal glands.Annu. Rev. Entomol. 19:61–80.Google Scholar
  24. Pasteels, J.M. 1968a. Les glandes tégumentaires des staphylins termitophiles. II. Les genresTermitellodes, Termella etNasutitella (Aleocharinae, Corotocini, Termitogastrina).Insectes Soc. 15:337–358.Google Scholar
  25. Pasteels, J.M. 1968b. Le système glandulaire tégumentaire des Aleocharinae (Coleoptera, Staphylinidae) et son evolution chez des espèces termitophiles du genreTermitella.Arch. Biol. (Liege) 79:381–469.Google Scholar
  26. Pasteels, J.M. 1969. Les glandes tégumentaires des staphylins termitophiles. III. Les aleocharinae des genresTermitophillus (Corotocini, Corotocina),Perinthodes, Catalina (Termitonannini, Perinthina),Termitusa (Termitohospitini, Termitusina).Insectes Soc. 16:1–26.Google Scholar
  27. Remold, H. 1962. Über die biologische Bedeutung der Duftdrüsen bei Landwanzen (Geocorisae).Z. Vergl. Physiol. 45:636–694.Google Scholar
  28. Robinson, R., Jaeger, R.H., andClark, K. 1962. 2,6-Dimethyloct-2-ene-1,8-dial.Chem. Abstr. Service 57:P2077e.Google Scholar
  29. Sakan, T., Isoe, S., Hyeon, S.B., Katsumura, R., andMaeda, T. 1965. The exact nature of matatabilactone and the terpenes ofNepeta cataria.Tetrahedron Lett. 1965:4097–4102.Google Scholar
  30. Schildknecht, H., Krauss, D., Connert, J., Essenbreis, H., andOrfanides, N. 1975. Das Spreitungsalkaloid Stenusin aus dem KurzflüglerStenus comma (Coleoptera: Staphylinidae).Angew. Chem. 87:421–422.Google Scholar
  31. Stenhagen, E., Abrahamsson, S.A., andMcLafferty, F.W. 1974. Registry of Mass Spectral Data, Vol. 1. John Wiley & Sons, New York.Google Scholar
  32. Tschinkel, W.R. 1975. A comparative study of the chemical defensive system of Tenebrionid beetles. Defensive behavior and ancillary features.Ann. Entomol. Soc. Am. 68:439–453.Google Scholar
  33. Weatherston, J., andPercy, J.E. 1978. Venoms of coleoptera, pp. 511–554,in S. Bettini (ed.). Arthropod Venoms, Handbook of Experimental Pharmacology, Vol. 48. Springer-Verlag, Berlin.Google Scholar
  34. Wheeler, J.W., Happ, G.M., Araujo, J., andPasteels, J.M. 1972. γ-Dodecalactone from rove beetles.Tetrahedron Lett. 1972:4635–4638.Google Scholar
  35. Wolinsky, J., andEustace, E.J. 1972. Syntheses of the dihydronepetalactones.J. Org. Chem. 37:3376–3378.Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • Martin Jefson
    • 1
  • Jerrold Meinwald
    • 1
  • Stephen Nowicki
    • 2
  • Karen Hicks
    • 2
  • Thomas Eisner
    • 2
  1. 1.Department of ChemistryCornell UniversityIthaca
  2. 2.Section of Neurobiology and Behavior Division of Biological SciencesCornell UniversityIthaca

Personalised recommendations