Journal of Chemical Ecology

, Volume 1, Issue 1, pp 59–82 | Cite as

Norsesquiterpenes as defensive toxins of whirligig beetles (Coleoptera: Gyrinidae)

  • James R. Miller
  • Lawrence B. Hendry
  • Ralph O. Mumma


By use of a minnow bioassay, toxins were detected in the pygidial secretions of the gyrinid beetlesDineutus assimilis (Kirby) andDineutus nigrior Roberts. The active agents, which may be largely responsible for the relative immunity of the Gyrinidae from predation, were isolated and identified as the norsesquiterpenesgyrinidione [(E)-1-methyl-2-formyl-3-(1′-methylhex-3′-ene-2′,5′-dione)-cyclopentane],gyrinidone [(E,Z)-2-hydroxy-5,9-dimethyl-4-(but-1′-ene-3′-one)-3-oxo-bicyclo[4.3.0]-non-4-ene],gyrinidal [(E,E,E)-3,7-dimethyl-8,11-dioxo-2,6,9-dodecatrienal], andisogyrinidal[(E,E,Z)-3,7-dimethyl-8,11-dioxo-2,6,9-dodecatrienal]. Since gyrinidione and isogyrinidal are being reported for the first time, their physical and chemical properties are presented and biosynthetic relationships of the four norsesquiterpene structures are discussed. About 50% of the beetle defensive material was norsesquiterpenes, 25% polar lipids, and 20% could not be extracted from water into chloroform. As quantified by gas-liquid chromatography,D. assimilis contained 245±73 μg andD. nigrior 144±64 μg norsesquiterpenes per individual. The average relative composition of norsesquiterpenes in the pygidial secretions of both beetle species was constant: isogyrinidal, 6%; gyrinidone, 7%; gyrinidione, 36%; and gyrinidal, 48%. When administered externally in solution to fish, isolated norsesquiterpenes possessed narcotic and toxic activity similar to that of the anesthetic steroids deoxycorticosterone (DOC) and testosterone. Minnow dose-response curves demonstrated that gyrinidione and gyrinidal (LC100=ca. 2 μg/ml) were as toxic to fish as was DOC (LC100=ca. 3 μg/ml). Gyrinidone was less toxic (LC100=ca. 15 μg/ml) while isogyrinidal was relatively inactive (LC100=ca. 90 μg/ml).

Key words

biocommunication defensive secretions Gyrinidae norsesquiterpenes gyrinidal isogyrinidal gyrinidone gyrinidione steroid anesthesia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benfield, E.F. 1970. Studies on the defense-alarm secretion ofDineutes discolor (Coleoptera: Gyrinidae). Ph.D. Thesis. Virginia Polytechnic Institute and State University, Blacksburg, Virginia. 111 pp.Google Scholar
  2. Benfield, E.F. 1972. A defensive secretion ofDineutes discolor (Coleoptera: Gyrinidae).Ann. Entomol. Soc. Am. 65:1324–1327.Google Scholar
  3. Cavill, G.W.K., andRobertson, P.L. 1965. Ant venoms, attractants, and repellents.Science 149:1337–1345.Google Scholar
  4. Clarke, R., Montgomery, S., Dundee, J., andBovill, J. 1971. Clinical studies of induction agents XXXIX. CT 1341, a new steroid anaesthetic.Br. J. Anaesthesia 43:941–952.Google Scholar
  5. Clayton, R.B. 1970. The chemistry of nonhormonal interactions: terpene compounds in ecology, pp. 235–280,in E. Sondheimer and J. Simeone (eds.), Chemical Ecology. Academic Press, New York.Google Scholar
  6. Eisner, T. 1970. Chemical defense against predation in arthropods, pp. 157–217,in E. Sondheimer and J. Simeone (eds.), Chemical Ecology. Academic Press, New York.Google Scholar
  7. Hara, T.J. 1967. Electrophysiological studies of the olfactory system of the goldfishCrassius auratus L. III. Effects of sex hormones on olfactory activity.Comp. Biochem. Physiol. 22:209–225.PubMedGoogle Scholar
  8. Kappas, A., andPalmer, R.H. 1963. Selected aspects of steroid pharmacology.Pharmacol. Rev. 15:123–167.Google Scholar
  9. Leech, H.B., andChandler, H.P. 1956. Aquatic coleoptera, pp. 293–371,in R. L. Usinger (ed.), Aquatic Insects of California. University of California Press, Berkeley, California.Google Scholar
  10. Meinwald, J., Opheim, K., andEisner, T. 1972. Gyrinidal: a sesquiterpenoid aldehyde from the defensive glands of gyrinid beetles.Proc. Natl. Acad. Sci. U.S. 69:1208–1210.Google Scholar
  11. Miller, C., Katzenellenbogen, J., andBowlus, S. 1973. A short, stereospecific synthesis of an insect defensive secretion, gyrinidal.Tetrahedron Letters 4:285–288.Google Scholar
  12. Miller, J.R., andMumma, R.O. 1973. Defensive agents of the American water beetlesAgabus seriatus andGraphoderus liberus.J. Insect Physiol. 19:917–925.Google Scholar
  13. Miller, J.R., andMumma, R.O. 1974. Unpublished observations.Google Scholar
  14. Natchtigall, W. 1965. Locomotion: swimming (hydrodronamics) of aquatic insects, p. 255,in M. Rockstein (ed.), The Physiology of Insects, Vol. II. Academic Press, New York.Google Scholar
  15. Oshima, K., andGorbman, A. 1968. Modifications by sex hormones of the spontaneous and evoked bulbar electrical activity in goldfish.J. Endocrinol. 40:409–420.PubMedGoogle Scholar
  16. Pavan, M. 1952. Iridomyrecin as insecticide.Int. Congr. Entomol. Trans, 1:321–327.Google Scholar
  17. Rouser, G., Kritchevsky, G., Galli, C., andHeller, D. 1965. Determination of polar lipids: quantitative column and thin-layer chromatography.J. Am. Oil Chemists' Soc. 42:215–227.Google Scholar
  18. Rudolph, P. 1967. Zum Ortungsuerfahren vonGyrinus substriatus Steph.Z. Physiol. 55:341–375.Google Scholar
  19. Schildknecht, H. 1970. The defensive chemistry of land and water beetles.Angew. Chem. Intern. Edit. Engl. 9:1–9.Google Scholar
  20. Schildknecht, H., andNeumaier, H. 1970. Eine Pygidialdrüsensubstanz des TaumelkäfersGyrinus natator.Chemiker Ztg. 94:25.Google Scholar
  21. Schildknecht, H., Neumaier, H., andTauscher, B. 1972a. Gyrinal, die Pygidialdrüsensubstanz der Taumelkäfer (Coleoptera: Carabidae).Liebigs Ann. Chem. 756:155–161.Google Scholar
  22. Schildknecht, H., Tauscher, B., andDraub, D. 1972b. Der Duftstoff des TaumlkäfersGyrinus natator L.Chemiker Ztg. 96:33–35.Google Scholar
  23. Selye, H. 1941a. Anesthetic effect of steroid hormones.Proc. Soc. Exp. Biol. Med. 46:116–121.Google Scholar
  24. Selye, H. 1941b. Studies concerning the anesthetic action of steroid hormones.J. Pharmacol. Exp. Therap. 73:127–141.Google Scholar
  25. Selye, H. 1941c. On the role of the liver in the detoxification of steroid hormones and artificial estrogens.J. Pharmacol. Exp. Therap. 71:236–238.Google Scholar
  26. Selye, H. 1942. Correlations between the chemical structure and the pharmacological actions of the steroids.Endocrinology 30:437–453.Google Scholar
  27. Selye, H., andHeard, R. 1943. The fish assay for the anesthetic effect of the steroids.Anesthesiology 4:36–47.Google Scholar
  28. Selye, H., andStone, H. 1944. Studies concerning the absorption and detoxification of anesthetic steroids.J. Pharmacol. Exp. Therap. 80:386–390.Google Scholar
  29. Silverstein, R., andBassler, G. 1967. Spectrometric Identification of Organic Compounds. John Wiley & Sons, New York.Google Scholar
  30. Stahl, E. 1969. Thin-layer Chromatography, A Laboratory Handbook. Springer-Verlag, New York.Google Scholar
  31. Sugiyama, N., andKashima, C. 1970. The photoreaction of 3-hexene-2,5-dione in methanol.Bull. Chem. Soc. Japan 43:1878–1879.Google Scholar
  32. Wheeler, J., Oh, S., Benfield, E., andNeff, S. 1972. Cyclopentanoid norsesquiterpenes from gyrinid beetles.J. Am. Chem. Soc. 94:7589–7590.Google Scholar
  33. Wilson, C.B. 1923. Water beetles in relation to pondfish culture, with life histories of those found in fishponds at Fairport, Iowa.U.S. Bureau Fish Bull. 39:231–345.Google Scholar
  34. Winter, H. 1941. Conditions influencing the course of steroid hormone anesthesia.Endocrinology 29:790–792.Google Scholar

Copyright information

© Plenum Publishing Corporation 1975

Authors and Affiliations

  • James R. Miller
    • 1
  • Lawrence B. Hendry
    • 1
  • Ralph O. Mumma
    • 1
  1. 1.Departments of Entomology, Chemistry, and the Pesticide Research Laboratory and Graduate Study CenterThe Pennsylvania State UniversityUniversity Park

Personalised recommendations