Advertisement

Journal of Chemical Ecology

, Volume 5, Issue 1, pp 63–77 | Cite as

Production of cardiac glycosides by chrysomelid beetles and larvae

  • D. Daloze
  • J. M. Pasteels
Article

Abstract

Cardenolides were looked for in 17 chrysomelid beetles belonging to 11 genera from three subfamilies, and they were found only inChrysolina andChrysochloa species (Chrysomelinae, Chrysolinini). The food plants of these insects are not known to produce cardenolides. TheChrysochloa and mostChrysolina species secrete a complex mixture of cardenolides, butChrysolina didymata secretes a single compound, andChrysolina carnifex, none. Several quantitative and perhaps qualitative differences were observed in the patterns of cardenolides produced by far distant populations of bothChrysolina polita andC. herbacea, collected in either France and Belgium, or Greece. These differences remain constant from one generation to the other, whatever the food plant is, and appear to be genetic. InC. polita from Greece, the pattern is unchanged after four generations bred in the laboratory onMentha ×villosa, which is known to be without cardenolides. In adults, the cardenolides are released with the secretion of the pronotal and elytral defensive glands, but in the larvae which lack the defensive glands, cardenolides are also produced. The total amount of cardenolides and the complexity of their mixture increases through the life cycle of the insects. The six main cardenolides secreted byC. coerulans were identified as: sarmentogenin, periplogenin, bipindogenin, and their corresponding xylosides.C. didymata secretes only sarmentogenin.

Key words

Chemical defense exocrine secretion cardenolides Chrysochloa Chrysolina Coleoptera Chrysomelidae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berti, N. 1968. Quelques observations sur la biologie dePhaedonia circumcincta Sahl et description des stades larvaires et nymphal.Bull Soc. Entomol. France 73:114–127.Google Scholar
  2. Blessington, B., andMorton, I.M. 1970. Mass spectrometry in cardenolide chemistry. I.Org. Mass Spectrom. 3:95–99.Google Scholar
  3. Blum, M.S., Wallace, J.B., Duffield, M.S., Brand, J.M., Fales, H.M., andSokoloski, E.A. 1978. Chrysomelidial in the defensive secretion of the leaf beetle,Gastrophysa cyanea Melsheimer.J. Chem. Ecol. 4:47–53.Google Scholar
  4. Brown, P., Bruschweiler, F. andPettitt, G.R. 1972. Massenspektrometrische Untersuchungen von Naturprodukten: Cardenolide.Helv. Chim. Acta 55:531–543.PubMedGoogle Scholar
  5. Deroe, C., andPasteels, J.M. 1977. Defensive mechanisms against predation in the Colorado beetleLeptinotarsa decemlineata Say.,Arch. Biol. 88:289–304.Google Scholar
  6. Durette, P.L., andHorton, D. 1971. Conformational studies on pyranoid sugar derivatives. The conformational equilibria of the D-aldopyranose tetraacetates and tetrabenzoates.J. Org. Chem. 36:2658–2669.Google Scholar
  7. Fechtig, B., von Euw, J., Schindler, O., andReichstein, T. 1960. Die Struktur der Sarmentoside. Glykoside vonStrophantus sarmentosus P. DC.Helv. Chim. Acta 43:1570- 1584.Google Scholar
  8. Fieser, L.F., andFieser, M. 1959. Steroids, p. 730, Reinhold. New York.Google Scholar
  9. Fujii, Y.,Shimada, K., andNambara, T. 1976. Isolation of cardiac steroid 3-sulphates from the skin of Japanese toads.Chem. and Ind. (London) 614.Google Scholar
  10. Garb, G. 1915. The eversible glands of a chrysomelid larva,Melasoma lapponica.J. Entomol. ZooJ.. 8:88–97.Google Scholar
  11. Hollande, A.C. 1909. Sur la fonction d'excrétion chez les insectes salicicoles et en particulier sur l'existence des dérivés salicylés.Ann. Univ. Grenoble 21:459–517.Google Scholar
  12. Holloway, J.K. 1964. Projects in biological control of weeds,in pp. 650–670, P. Deback and E.I. Schlinger (eds.).Biological Control of Insects, Pests and Weeds. Chapman and Hall, London.Google Scholar
  13. Höriger, N., Zivanov, D., Linde, H.H.A., andMeyer, K. 1970. Weitere Cardenolide ausCh'an su.Helv. Chim. Acta 53:2051–2059.PubMedGoogle Scholar
  14. Jones, T.H., Meinwald, J., Hicks, K., andEisner, T. 1977. Characterization and synthesis of volatile compounds from the defensive secretions of some “daddy longlegs” (Arachnida: Opiliones:teiobunum sp.)Proc. Natl. Acad. Sci. U.S.A. 74:419–422.PubMedGoogle Scholar
  15. Katz, A. 1948. Konstitution des Sarmentogenins.Helv. Chim. Acta 31:993–1004.Google Scholar
  16. Kedde, D.L. 1947. The chemical investigation of digitalis preparations.Pharm. Weekblad. 82:741–757.Google Scholar
  17. Kochetkov, N.K., andChizhov, O.S. 1966. Mass spectrometry of carbohydrate derivatives.Adv. Carbohydr. Chem. 21:39–93.Google Scholar
  18. Lemieux, R.U., andStevens, J.D. 1966. The proton magnetic resonance spectra and tautomeric equilibria of aldoses in deuterium oxide.Can. J. Chem. 44:249–262.Google Scholar
  19. Lewbart, L., Wehrli, W., andReichstein, T. 1963. Die Cardenolide vonGongronemagazense (S. Moore) Bullock.Helv. Chim. Acta 46:505–517.Google Scholar
  20. Meinwald, J., Jones, T.H., Eisner, T., andHicks, K. 1977. New methylcyclopentanoid terpenes from the larval defensive secretion of a chrysomelid beetle (Plagiodera versicolora).Proc. Natl. Acad. Sci. U.S.A. 74:2189–2193.PubMedGoogle Scholar
  21. Pasteels, J.M. 1976. Evolutionary Aspects in Chemical Ecology and Chemical Communication.Proc. XVth Int. Cong. Entomol, Washington D.C., pp. 281–293.Google Scholar
  22. Pasteels, J.M., andDaloze, D. 1977. Cardiac glycosides in the defensive secretion of Chrysomelid beetles: Evidence for their production by the insects.Science 197:70–72.PubMedGoogle Scholar
  23. Rees, C.J.C. 1969. Chemoreceptor specificity associated with choice of feeding site by the beetleChrysolina brunsvicensis on its food plantHypericum hirsutum, J. De Wilde, and L.M. Schoonhoven (eds.).In pp. 565–583,Insect and Host Plant. North-Holland Publishing Company, Amsterdam.Google Scholar
  24. Rodriguez, E., Towers, G.H.N., andMitchell, J.C. 1976. Biological activities of sesquiterpene lactones.Phytochemistry 15:1573–1580.Google Scholar
  25. Rothschild, M., von Euw, J., andReichstein, T. 1970. Cardiac glycosides in the oleander aphid,Aphis nerii.J. Insect Physiol 16:1141–1145.PubMedGoogle Scholar
  26. Rothschild, M., von Euw, J., andReichstein, T. 1973. Cardiac glycosides (heart poisons) in the polka-dot mothSyntomeida epilais Walk. (Ctenuchidae: Lepidoptera) with some observations on the toxic qualities ofAmata (=Syntomis)phegea L.Proc. Soc. London, Ser. B 183:227–247.Google Scholar
  27. Singh, B., andRastogi, R.P. 1970. Cardenolides. Glycosides and genins.Phytochemistry 9:315–331.Google Scholar
  28. Speiser, P., andReichstein, T. 1947. Konfiguration des Periplogenins und des allo-Periplogenins.Helv. Chim. Acta 30:2143–2158.Google Scholar
  29. Tamm, C. 1956. Neuere Ergebnisse auf dem Gebiete der glykosidischen Herzgifte: Grundlagen und die Aglykone.Fortsch. Chem. Org. Naturstoffe 13:137–231.Google Scholar
  30. Tori, K., andAono, K. 1965. NMR studies on steroids. X. δ20(22)-Cardenolides.Ann. Rep. Shionogi Res. Lab. 15:130–137.Google Scholar
  31. Wigglesworth, V.B. 1968. The Life of Insects. New American Library. New York.Google Scholar
  32. Yamaguchi, K. 1970. Spectral Data of Natural Products, pp. 227–230, Elsevier, New York.Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • D. Daloze
    • 1
  • J. M. Pasteels
    • 1
  1. 1.Collectif de Bio-écologie and Biologie Animale et CellulaireUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations