Advertisement

Journal of Chemical Ecology

, Volume 10, Issue 1, pp 115–123 | Cite as

Berberine: A naturally occurring phototoxic alkaloid

  • B. J. R. Philogène
  • J. T. Arnason
  • G. H. N. Towers
  • Z. Abramowski
  • F. Campos
  • D. Champagne
  • D. McLachlan
Article

Abstract

The isoquinoline alkaloid berberine, present in nine different plant families was found to be phototoxic to mosquito larvae. In the presence of near UV the LC50 for acute 24-hr toxicity was 8.8 ppm compared to 250 ppm for dark controls. Mosquito larvae that were treated with 10 ppm berberine plus near UV for 24 hr and then transferred to berberine-free water showed decreased larval survival and resulted in a smaller cumulative number of pupae and adults as compared to controls, during a subsequent 4-week development period. Berberine was found to be a singlet O2 generator in experiments with the chemical trap 2,5-dimethyl furan. A slight increase in chromosome aberrations in Chinese hamster cells was also observed with berberine plus near UV treatment. The significance of the phototoxicity of berberine is discussed in relation to plant-insect relations.

Key words

Berberine phototoxicity Aedes atropalpus Diptera Culicidae singlet oxygen UV alkaloid secondary plant substance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnason, J.T., Chan, F.G.Q., Wat, C.K., Downum, K., andTowers, G.H.N. 1981. In vivo photosensitization ofE. coli andS. cerevisiae by alpha terthienyl.Photochem. Photobiol. 33:821.Google Scholar
  2. Arnason, J.T.,Towers, G.H.N.,Philogene, B.J.R., andLambert, J. 1983. Naturally occurring photosensitizers and their effects on insects, pp. 139–151,in P. Hedin(ed.). Mechanisms of Plant Resistance to Insects. ACS Symposium, Las Vegas.Google Scholar
  3. Dethier, V.G. 1980. Evolution of receptor sensitivity to secondary plant substances with special reference to deterrents.Am. Nat. 115:45–55.Google Scholar
  4. Devitt, B.D., Philogene, B.J.R., andKinks, C.F. 1980. Effects of veratrine, berberine, nicotine and atropine on developmental characteristics and survival of the dark-sided cutwormEuxoa messoria (Lepidoptera: Noctuidae).Phytoprotection 61:88–102.Google Scholar
  5. Faddejeva, M.D., Belyaeva, T.N., Novikov, J.P., andShalabi, H.C. 1980.IRCS Libr. Compend. 8(9):612.Google Scholar
  6. Gilbert, L.E. 1977. Development of theory in the analysis of insect-plant interactions, pp. 117–154,in D.H. Horn, G.R. Stairs, R.D. Mitchell (eds.). Analysis of Ecological Systems. Ohio State University Press, Columbus.Google Scholar
  7. Greathouse, C.G., andWatkins, G.N. 1938. Berberine as a factor in the resistance ofMahonia trifoliata andM. swaseyi toPhymatotrichum root rot.Am. J. Bot. 25:743–748.Google Scholar
  8. Ito, T. 1978. Cellular and subcellular mechanisms of photodynamic action: The1O2 hypothesis as a driving force in recent research.Photochem. Photobiol. 28:493–508.PubMedGoogle Scholar
  9. Jeffs, P.W. 1967. The protoberberine alkaloids, pp. 41–115,in R.H.F. Manske (ed.). The Alkaloids, Vol. IX. Academic Press, New York.Google Scholar
  10. Macrae, W.D., Chan, G.F.Q., Wat, C.K., Towers, G.H.N., andLam, J. 1980. Examination of naturally occurring polyacetylenes and alpha terthienyl for their ability to induce cytogenetic damage.Experientia 36:1096–1097.PubMedGoogle Scholar
  11. Maidi, M., andChauduri, K. 1981. Interaction of berberine chloride with naturally occurring DNA.Indian J. Biochem. Biophys. 18:245–250.PubMedGoogle Scholar
  12. Manske, R.H.F. 1950. Sources of alkaloids and their isolation, pp. 1–14,in R.H.F. Manske and H.L. Holmes (eds.). The Alkaloids, Vol. 1. Academic Press, New York.Google Scholar
  13. Manske, R.H.F. 1968. Papaveraceae alkaloids, pp. 467–483,in R.H.F. Manske (ed.). The Alkaloids Vol. X. Academic Press, New York.Google Scholar
  14. Nakamura, J. 1977. Material active against fungi. Patent: Ger. Offen., 2552630. West Germany. 37 pp.Google Scholar
  15. Pesson, P. 1980. A propos de l'instrict botanique des insectes: Un aspect de la co-evolution des plantes et des insectes.Ann. Soc. Entomol. Fr. 16:435–452.Google Scholar
  16. Pfyffer, G.E., Panfil, I., andTowers, G.H.N. 1982. Monofunctional covalent photobinding of dictamnine, a furoquinoline alkaloid, to DNA as a target in vitro.Photochem. Photobiol. 35:63–68.Google Scholar
  17. Philogene, B.J.R., andLabaky, L. 1982. Effects of 1.8D Matacil (Aminocarb) onAedes atropalpus.Ann. Soc. Entomol. Que. 27:167–171.Google Scholar
  18. Raffauf, R.F. 1970. A Handbook of Alkaloids and Alkaloid-Containing Plants. Wiley & Sons. New York.Google Scholar
  19. Rama Rao, N., andTandon, S.N. 1978. Thin layer chromatography of some toxic alkaloids on metal salt impregnated silica gel.J. Chromatogr. Sci. 16:158–161.Google Scholar
  20. Santavy, F. 1970. Papaveraceae alkaloids, pp. 333–454,in R.H.F. Manske(ed.). The Alkaloids, Vol. XII. Academic Press. New York.Google Scholar
  21. Spikes, J.D. 1977. Photosensitization, pp. 87–112,in K.C. Smith (ed.). The Science of Photobiology. Plenum Press, New York.Google Scholar
  22. Yoshikazu, K., 1976. Organic and biological aspects of berberine alkaloids.Heterocycles 4:197–219.Google Scholar
  23. Zwölfer, H. 1978. Mechanismen and Ergenbnisse des Co-Evolution von phytophagen and entomophagen Insekten and Höheren PflanzenSonderd.Naturwiss. Ver. Humberg 2:7–50.Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • B. J. R. Philogène
    • 1
  • J. T. Arnason
    • 1
  • G. H. N. Towers
    • 2
  • Z. Abramowski
    • 2
  • F. Campos
    • 1
  • D. Champagne
    • 1
  • D. McLachlan
    • 1
  1. 1.Department of BiologyUniversity of OttowaOttowaCanada
  2. 2.Department of BotanyUniversity of Britsh ColumbiaVancouverCanada

Personalised recommendations