Journal of Chemical Ecology

, Volume 6, Issue 1, pp 57–70

Alarm pheromones from the marine opisthobranchNavanax inermis

  • Howard L. Sleeper
  • Valerie J. Paul
  • William Fenical
Article

Abstract

When molested, the marine opisthobranchNavanax inermis secretes into its slime trail, a bright yellow mixture of three major compounds and several closely related minor substances. Collectively, these compounds induce an avoidance-alarm response in a trail-followingNavanax at the concentration limits of 1 × 10−5 M. The three major compounds have been isolated and identified as 10-(3′-pyridyl)-3E,5E,7E,9E-decatetraen-2-one (navenone A), 10-phenyl-3E,5E,7E,9E-decatetraen-2-one (navenone B) and 10-(4′-hydroxyphenyl)-3E,5E,7E,9E-decatetraen-2-one (navenone C). The minor constituents of the mixture are proposed as the 3Z,5Z,7E,9E-isomers and the 3-methyl homologs of navenones A and B. The navenones appear to be produced in a specialized gland referred to in earlier studies as the “yellow gland” and to communicate the presence of predators within the species.

Key words

Navanax inermis (syn.Chelidonura inermismarine-alarm pheromones navenones A-C chemical defense 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atema, J., andStenzler, D. 1977. Alarm substance of the marine mud snail,Nassarius obsoletus: Biological characterization and possible evolution.J. Chem. Ecol. 3:173–187.Google Scholar
  2. Bertsch, H., andSmith, A.A. 1970. Observations on opisthobranchs of the Gulf of California.Veliger 13:171–174.Google Scholar
  3. Blair, G.M., andScapy, R.R. 1972. Selective predation and prey location in the sea slugNavanax inermis.Veliger 15:119–124.Google Scholar
  4. Von Frisch, K. 1941. Über einen Schreckstoff der Fischhaut und seine biologiche Bedeutung. Z.Vergl. Physiol 29:46–145.Google Scholar
  5. Von Frisch, K. 1938. ZurdePsychologie des Fisch-schwarmes.Naturwissenschaften 26:601–606.Google Scholar
  6. Gehlach, F.R., Watkins, J.F., and Kroll, J.C. 1971. Pheromone trail-following studies of Typhlopid, Leptotyhopid, and Colubrid snakes.Behavior 40:282–294.Google Scholar
  7. Grant, P.T., andMackie, A.M. 1974.Chemoreception in Marine Organisms, 254 pages. Academic Press, New York.Google Scholar
  8. Howe, N.R., andSheikh, Y.M. 1975. Anthopleurine, a sea anemone alarm pheromone.Science 189:386–388.Google Scholar
  9. Karlson, P., andButenandt, A. 1959. Pheromones (Ectohormones) in insects.Annu. Rev. Entomol. 4:39–58.Google Scholar
  10. Kittredge, J.S., Takahashi, F.T., Lindsey, J., andLasker, R. 1974. Chemical signals in the sea: Marine allelochemics and evolution.Fish. Bull. 72:1–11.Google Scholar
  11. Murray, M.J., andLewis, E.R. 1974. Sensory control of prey capture inNavanax inermis.Veliger 17:156–158.Google Scholar
  12. Paine, R.T. 1965. Natural history, limiting factors and energetics of the opisthobranchNavanax inermis.Ecology 46:603–691.Google Scholar
  13. Paine, R.T. 1963. Food recognition and predation on opisthobranchs byNavanax inermis.Veliger 6:1–9.Google Scholar
  14. Pasto, D.J., andJohnson, C.R. 1969.Organic Structure Determination, page 106. Prentice Hall, Englewood Cliffs, New Jersey.Google Scholar
  15. Rudman, W.B. 1974. A comparison ofChelidonura, Navanax, andAglaja with other genera of the Aglajidae (Opisthobranchia; Gastropoda).Zool. J. Linn. Soc. 54:185–212.Google Scholar
  16. Scheuer, P.J. 1977. Chemical communication of marine invertebrates.BioScience 27:664–668.Google Scholar
  17. Sleeper, H.L., andFenical, W. 1977. Navenones A-C; trail-breaking alarm pheromones from the marine opisthobranchNavanax inermis.J. Am. Chem. Soc. 99:2367–2368.Google Scholar
  18. Stenzler, D., andAtema, J. 1977. Alarm response of the marine mud snail,Nassarius obsoletus: Specificity and behavioral priorityJ. Chem. Ecol. 3:159–171.Google Scholar
  19. Thompson, T.E. 1960. Defensive adaptations in opisthobranchs.J. Mar. Biol. Assoc. U.K. 39:123–134.Google Scholar
  20. Wadell, W.H., Crouch, R., Nakanishi, K., andTurro, N.J. 1976. Quantitative aspects of the photochemistry of isomeric retinals and visual pigments.J. Am. Chem. Soc. 98:4189–4192.Google Scholar
  21. Wheeler, J.W. 1976. Insect and mammalian pheromones.Lloydia 39:53–59.Google Scholar
  22. Wilson, E.O. 1970. Chemical communication within animal species, pages 133–155, E. Sondheimer and J.B. Simeone, (eds.).Chemical Ecology. Academic Press, London.Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • Howard L. Sleeper
    • 1
  • Valerie J. Paul
    • 1
  • William Fenical
    • 1
  1. 1.Institute of Marine ResourcesScripps Institution of OceanographyLa Jolla

Personalised recommendations