Advertisement

Journal of Chemical Ecology

, Volume 19, Issue 6, pp 1135–1141 | Cite as

A new cucurbitacin profile forCucurbita andreana: A candidate for cucurbitacin tissue culture

  • Fathi T. Halaweish
  • Douglas W. Tallamy
Article

Abstract

In addition to previously reported cucurbitacins B,1, and D,2, cucurbitacin E,3, and I,4, aglycones and their glucosides 2-O-β-glucopyranosyl-cucurbitacin E,5, and 2-O-β-glucopyranosyl-cucurbitacin I,6, were isolated and identified as constituents ofCucurbita andreana on the basis of MS, FD-MS, 1 H NMR and13C NMR spectroscopy. Also, 2-O-β-glucopy-ranosyl-cucurbitacin B, 7, cucurbitacin B glucoside was isolated and identified.

Key words

Cucurbita andreana cucurbitacins E and I glucosides phagostimulant tissue culture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bar-Nun, N., andMayer, A.M. 1990. Cucurbitacins-repressors of induction of laccase formation.Phytochemistry 28:1369–1371.Google Scholar
  2. Chambliss, O.L., andJones, C.M. 1966. Cucurbitacins: Specific insect attractants in Cucurbitaceae.Science 153:1392–1393.Google Scholar
  3. Dubois, M., Bauer, R., Cagiotti, M.R., andWagner, H. 1988. Foetidissimoside A, a new 3,38-didesmosidic triterpenoid saponin, and cucurbitacins fromCucurbita foetidissima.Phytochemistry 27:881–885.Google Scholar
  4. Fang, X., Phoebe, C.H., Pezzuto, J.M., Fong, H.H.S., andFarnsworth, N.R. 1984. Plant anticancer agents, XXXIV. Cucurbitacins fromElaeocarpus dolichostylus.J. Nat. Prod. 47:988–993.PubMedGoogle Scholar
  5. Guha, J., andSen, S.P. 1975. The cucurbitacins—a review.Plant Biochem. J. 2:12–28.Google Scholar
  6. Halaweish, F.T. 1987. Cucurbitacins in tissue cultures ofBryonia dioica Jacq. PhD Thesis. Uni-versity of Wales, Cardiff, U.K..Google Scholar
  7. Hatam, N.A.R., Whitting, D.A., andYousif, N.J. 1989. Cucurbitacin glycosides fromCitrullus colocynthis.Phytochemistry 28:1268–1271.Google Scholar
  8. Jacobs, H., Singh, T., Reynolds, W., andMcLean, S. 1990. Isolation and C-NMR assignments of Cucurbitacins fromCayaponia angustiloba, C. racemosa, andGurania subumbellata.J. Nat. Prod. 53:1600–1605.Google Scholar
  9. Lance, D.R. 1988. Potential of 8-methyl-2-decyl popanoate and plant-derived volatiles for attracting com rootworm beetles (Coleoptera: Chrysomelidae) to toxic baits,J. Econ. Entomol. 81:1359–1362.Google Scholar
  10. Lance, D.R., andSutter, G.R. 1990. Field-cage and laboratory evaluations of semiochemical-based baits for managing western corn rootworm (Coleoptera: Chrysomelidae).J. Econ. Ento-mol. 83:1085–1090.Google Scholar
  11. Lavie, D., andGlotter, E. 1971. The cucurbitacins, a group of tetracyclic triterpenes.Fortschr. Chem. Org. Naturst. 29:307–356.PubMedGoogle Scholar
  12. Metcalf, R.L. 1985. Plant kairomones and insect pest control.Bull. Ill. Nat. Hist. Surv. 33:175–198.Google Scholar
  13. Metcalf, R.L. 1986. Foreward, pp. 7–15,in J.L. Krysan and T.A. Miller (eds.). Methods for the Study of PestDiabrotica. Springer-Verlag, New York.Google Scholar
  14. Metcalf, R.L., andLampman, R.L. 1989. The chemical ecology of diabroticites and Cucurbitaceae.Experientia 45:240–247.Google Scholar
  15. Metcalf, R.L., Metcalf, R.A., andRhodes, A.M. 1980. Cucurbitacins as kairomones for diabroticite beetles.Proc. Nat. Acad. Sci. U.S.A. 17:3769–3772.Google Scholar
  16. Metcalf, R.L., Rhodes, A.M., Metcalf, R.A., Ferguson, J.E., Metcalf, E.R., andPo-Yung, L. 1982. Cucurbitacin contents and diabroticite (Coleoptera: Chrysomelidae) feeding uponCucurbita spp.Environ. Entomol. 11:931–937.Google Scholar
  17. Metcalf, R.L., Ferguson, J.E., Lampman, R., andAnderson, J.F. 1987. Dry cucurbitacin-containing baits for controlling diabroticite beetles (Coleoptera: Chrysomelidae),J. Econ. Entomol. 80:870–875.Google Scholar
  18. Sasamori, H., Reddy, K.S., Kirkup, M.P., Shabanowitz, J., Lynn, D.G., Hecht, S.M., Woode, K.A., Bryan, R.F., Campbell, J., Lynn, W.S., Egert, E., andSheldrick, G.M. 1983. New cytotoxic principles fromDatisca glomerata.J. Chem. Soc. Perkin Trans. I 1983:1333–1347.Google Scholar
  19. Sharma, G.C., andHall, C.V. 1971. Influence of cucurbitacins, sugars, and fatty acids on cucurbit susceptibility to spotted cucumber beetle.Am. Soc. Hortic. Sci. J. 96:675–680.Google Scholar
  20. Stopper, H., Kahlig, H., Seligmann, O., andWagner, H. 1990. Minor cucurbitacin glycosides fromPicrorhiza kurrooa.Phytochemistry 29:1633–1637.Google Scholar
  21. Tallamy, D.W., andHalaweish, F.T. 1993. The effect of age, prior exposure reproductive activity, on sensitivity to cucurbitacins in sex, and southern corn rootworm (Coleoptera: Chry-somelidae),Environ. Entomol. Submitted.Google Scholar
  22. Velde, V.V., andLavie, D. 1983.13C-NMR spectrotoscopy of cucurbitacins.Tetrahedron 39:317–321.Google Scholar
  23. Weissling, T.J., Meinke, L.J., Trimnell, D., andGolgen, K.L. 1989. Behavioral responses ofDiabrotica adults to plant-derived semichemicals encapsulated in a starch borate matrix.Entomol. Exp. Appl. 53:219–228.Google Scholar
  24. Whithouse, M.W., andDoskotch, W.W. 1979. Binding of the cytotoxic and antitumor triterpenes, cucurbitacins, to glucocorticoid receptor of HeLa cells.Biochem. Pharmacol. 18:1790–1793.Google Scholar
  25. Witkowski, A., andKonopa, J. 1981. Selective inhibition of thymidine incorporation into lymphocytes by cucurbitacin B and D.Biochim. Biophys. Acta 674:246–250.PubMedGoogle Scholar
  26. Witkowski, A., Woynarowska, B., andKonopa, J. 1984. Inhibition of the biosynthesis of desoxyribonucleic acid, ribonucleic acid and protein in HeLa S3 cell by cucurbitacins, glucocorticoid-like cytotoxic triterpenes.Biochem. Pharmacol. 33:995–1005.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Fathi T. Halaweish
    • 1
  • Douglas W. Tallamy
    • 1
  1. 1.Department of Entomology & Applied EcologyCollege of Agricultural Sciences University of DelawareNewark

Personalised recommendations