Advertisement

Journal of Chemical Ecology

, Volume 10, Issue 12, pp 1823–1857 | Cite as

Plant-determined variation in cardenolide content and thin-layer chromatography profiles of monarch butterflies,Danaus plexippus reared on milkweed plants in California

3. Asclepias californica
  • L. P. Brower
  • J. N. Seiber
  • C. J. Nelson
  • S. P. Lynch
  • M. P. Hoggard
  • J. A. Cohen
Article

Abstract

Variation in gross cardenolide concentration of the mature leaves of 85Asclepias californica plants collected in four different areas of California is a positively skewed distribution ranging from 9 to 199 μg of cardenolide per 0.1 g dry weight with a mean of 66 μg/0.1 g. Butterflies reared individually on these plants in their native habitats contained a normal distribution of cardenolide ranging from 59 to 410 μg of cardenolide per 0.1 g dry weight with a mean of 234 μg. Cardenolide uptake by the butterflies was a logarithmic function of plant concentration. Total cardenolide per butterfly ranged from 143 to 823 μg with a mean of 441 μg and also was normally distributed. Populational variation of plant cardenolide concentrations occurs within subspecies, but the northern subspeciesA. c. greenei does not differ significantly from the southernA. c. californica. Generally higher concentrations occur in butterflies from northern populations and in females. No evidence was adduced that cardenolides in the plants adversely affected the butterflies. Low cardenolide concentrations in the leaves and the absence of cardenolides in the latex characterize bothA. californica andA. speciosa, but notA. eriocarpa. Thin-layer chromatography in two solvent systems isolated 24 cardenolide spots in the plants, of which 18 are stored by the butterflies. There was a minor difference in the cardenolide spot patterns due to geographic origin of the plants, but as in our previous studies, none in the sexes of the butterflies. UnlikeA. eriocarpa andA. speciosa, A. californica plants lack cardenolides withRf values greater than digitoxigenin. Overall, the cardenolides of bothA. californica andA. speciosa are more polar than those inA. eriocarpa. A. californica plants contain cardenolides of the calotropagenin series including calotropin, calactin, and uscharidin, and the latter is metabolically transformed by monarch larvae to calactin and calotropin. Cardenolides of this series also occur inA. vestita, andA. cordifolia from California, the neotropicalA. curassavica, and the AfricanCalotropis procera, Gomphocarpus spp., andPergularia extenso; they therefore cross established taxonomic lines.A. californica is the predominant early season milkweed in California and may be important in providing chemical protection to the spring generation of monarchs in the western United States.A. speciosa, A. eriocarpa, andA. californica each imparts distinctive cardenolide fingerprints to the butterflies, so that ecological predictions are amenable to testing.

Key words

Danaus plexippus Lepidoptera Danaidae monarch butterflies Asclepias californica Asclepiadaceae milkweeds ecological chemistry plant-insect interactions chemical ecology chemical defense chemotaxonomy coevolution thin-layer chromatography cardenolide fingerprints cardenolides calotropagenin glycosides calactin calotropin uscharidin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anon. 1965. Topographic Map of E. Trimmer, California. U.S. Geological Survey of California, 7.5′ Quadrangle.Google Scholar
  2. Anon. 1967. Topographic Map of Kaweah, California. U.S. Geological Survey of California, 15′ Quadrangle.Google Scholar
  3. Anon. 1968a. Topographic Map of Diablo, California. U.S. Geological Survey of California, 7.5′ Quadrangle.Google Scholar
  4. Anon. 1968b. Topographic Map of Mt. San Antonio, California. U.S. Geological Survey of California. 7.5′ Quadrangle.Google Scholar
  5. Anon. 1972a. Fresno County. California State Automobile Association, 150 Van Ness Ave., San Francisco, California (Map).Google Scholar
  6. Anon. 1972b. Tulare County. Automobile Club of Southern California, 2601 South Figueroda St., Los Angeles, California.Google Scholar
  7. Anon. 1974. Bay and River Area. California State Automobile Association, 150 Van Ness Ave., San Francisco, California (Map).Google Scholar
  8. Anon. 1975. San Bernardino County, Automobile Club of Southern California, 2601 South Figueroda St., Los Angeles, California.Google Scholar
  9. Anon. 1979. SAS User's Guide, 1979 Edition. SAS Institute, Inc., Cary, North Carolina, ix + 494 pp.Google Scholar
  10. Barbour, M.G., andMajor, J. (eds.). 1977. Terrestrial Vegetation of California. John Wiley and Sons, New York, ix + 1002 pp.Google Scholar
  11. Brower, L.P. 1977. Monarch migration.Nat. Hist. 86:40–53.Google Scholar
  12. Brower, L.P. 1984a. Chemical defence in butterflies: The biology of butterflies.Symp. R. Entomol. Soc. London 11:109–134.Google Scholar
  13. Brower, L.P. 1984b. New perspectives on the migration biology of the monarch butterfly,Danaus plexippus L.,in Migration, Mechanisms and Adaptive Significance. H.F. Dingle and M.A. Rankin (eds.). University of Texas Contribution Marine Science Supplement 27. In press.Google Scholar
  14. Brower, L.P., andGlazier, S.C. 1975. Localization of heart poisons in the monarch butterfly.Science 188:19–25.Google Scholar
  15. Brower, L.P., andHuberth, J.C. 1977. Strategy for survival: Behavioral ecology of the monarch butterfly (30 minute motion picture film). Copyright 1976. Pennsylvania State Univ. Psychological Cinema Register, Film #32460.Google Scholar
  16. Brower, L.P., andMoffitt, C.M. 1974. Palatability dynamics of cardenolides in the monarch butterfly.Nature 249:280–283.Google Scholar
  17. Brower, L.P., McEvoy, P.B., Williamson, K.L., andFlannery, M.A. 1972. Variation in cardiac glycoside content of monarch butterflies from natural populations in eastern North America.Science 177:426–429.Google Scholar
  18. Brower, L.P., Edmunds, M., andMoffitt, C.M. 1975. Cardenolide content and palatability ofDanaus chrysippus butterflies from West Africa.J. Entomol. (A) 49:183–196.Google Scholar
  19. Brower, L.P., Seiber, J.N., Nelson, C.J., Lynch, S.P., andTuskes, P.M. 1982. Plant-determined variation in the cardenolide content, thin-layer chromatography profiles, and emetic potency of monarch butterflies,Danaus plexippus reared on the milkweed,Asclepias eriocarpa in California.J. Chem. Ecol. 8:579–633.Google Scholar
  20. Brower, L.P., Seiber, J.N., Nelson, C.J., Lynch, S.P., andHolland, M.M. 1984. Plant-determined variation in the cardenolide content, thin-layer chromatography profiles, and emetic potency of monarch butterflies,Danaus plexippus L. reared on milkweed plants in California. 2:Asclepias speciosa.J. Chem. Ecol. 10: 601–639.Google Scholar
  21. Bruschweiler, F., Stockel, K., andReichstein, T. 1969.Calotropis-Glykoside, vermutliche Teilstruktur.Helv. Chim. Acta 52:2276–2303.Google Scholar
  22. Chaplin, S.B., andWells, P.H. 1982. Energy reserves and metabolic expenditures of monarch butterflies overwintering in southern California.Ecol. Entomol. 7:249–256.Google Scholar
  23. Cheung, H.T.A., Chiu, F.C.K., Watson, T.R., andWells, R.J. 1983. Cardenolide glycosides of the Asclepiadaceae. New glycosides fromAsclepias fruticosa and the stereochemistry of uscharin, voruscharin, and calotoxin.J. Chem. Soc. Perkin Trans, 1 (1983): 2827–2835.Google Scholar
  24. Cohen, J.A. 1983. Chemical interactions among milkweed plants (Asclepiadaceae) and lepidopteran herbivores. PhD dissertation, University of Florida, xi + 147 pp.Google Scholar
  25. Hesse, G., andReicheneder, F. 1936. African heart poison calotropin. I.Liebigs Ann. Chem. 526:252–276.Google Scholar
  26. Hesse, G., Reicheneder, F., andEysenbach, H. 1939. African heart poisons II. Heart poisons inCalotropis latex.Liebigs Ann. Chem. 537:67–86.Google Scholar
  27. Hill, H.F., Jr., Wenner, A.M., andWells, P.H. 1976. Reproductive behavior in monarch butterflies overwintering in California.Am. Midl. Nat. 95:10–19.Google Scholar
  28. Lynch, S.P. 1977. Studies in the Floral Biology ofAsclepias L. PhD dissertation, University of California, Davis, vi + 117 pp.Google Scholar
  29. Malcolm, S.B. 1981. Defensive use of plant-derived cardenolides byAphis nerii Boyer de Fonscolombe against predation. PhD dissertation, Oxford University, v + 165 pp.Google Scholar
  30. Marty, M.A., andKrieger, R.I. 1984. Metabolism of uscharidin, a milkweed cardenolide, by tissue homogenates of monarch butterfly larvae,Danaus plexippus L.J. Chem. Ecol. 10:945–956.Google Scholar
  31. Munz, R.A., andKeck, D.D. 1959. A California Flora. University of California Press, Berkeley, California, 1681 pp.Google Scholar
  32. Nelson, C.J., Seiber, J.N., andBrower, L.P. 1981. Seasonal and intraplant variation of cardenolide content in the California milkweed,Asclepias eriocarpa, and implications for plant defense.J. Chem. Ecol. 7:981–1010.Google Scholar
  33. Reichstein, T., Von Euw, J., Parsons, J.A., andRothschild, M. 1968. Heart poisons in the monarch butterfly.Science 161:861–866.Google Scholar
  34. Roeske, C.N., Seiber, J.N., Brower, L.P., andMoffitt, C.M. 1976. Milkweed cardenolides and their comparative processing by monarch butterflies (Danaus plexippus L.).Rec. Adv. Phytochem. 10:93–167.Google Scholar
  35. Seiber, J.N., Tuskes, P.M., Brower, L.P., andNelson, C.J. 1980. Pharmacodynamics of some individual milkweed cardenolides fed to larvae of the monarch butterfly (Danaus plexippus L.).J. Chem. Ecol. 6:321–339.Google Scholar
  36. Seiber, J.N., Nelson, C.J., andLee, S.M. 1982. Cardenolides in the latex and leaves of sevenAsclepias species andCalotropis procera.Phytochemistry 21:2343–2348.Google Scholar
  37. Seiber, J.N., Lee, S.M., andBenson, J.M. 1983. Cardiac glycosides (cardenolides) in species ofAsclepias (Asclepiadaceae), pp. 43–83,in R.F. Keeler and A.T. Tu (eds.). Handbook of Natural Toxins, Vol. I: Plant and Fungal Toxins. Marcel Dekker, Amsterdam.Google Scholar
  38. Singh, B., andRastogi, R.P. 1969. Chemical investigation ofAsclepias curassavica Linn.Indian J. Chem. 7:1105–1110.Google Scholar
  39. Steel, R.G.D., andTorrie, J.H. 1960. Principles and Procedures of Statistics. McGraw-Hill, New York, xvi + 481 pp.Google Scholar
  40. Tuskes, P.M., andBrower, L.P. 1978. Overwintering ecology of the monarch butterfly,Danaus plexippus, in California.Ecol. Entomol. 3:141–153.Google Scholar
  41. Urquhart, F.A. 1960. The Monarch Butterfly. University of Toronto Press, Toronto, Canada, xxiv + 361 pp.Google Scholar
  42. Urquhart, F.A., Beard, P., andBrownlee, R. 1965. A population study of a hibernal roosting colony of the monarch butterfly (Danaus plexippus) in northern California.J. Res. Lepid. 4:221–226.Google Scholar
  43. Urquhart, F.A., andUrquhart, N.R. 1977. Overwintering areas and migratory routes of the monarch butterfly (Danaus p. plexippus, Lepidoptera: Danaidae) in North America with special reference to the western population.Can. Entomol. 109:1583–1589.Google Scholar
  44. Urquhart, F.A., Urquhart, N.R., andMunger, F. 1970. A study of a continuously breeding population ofDanaus plexippus in southern California compared to a migratory population and its significance in the study of insect movement.J. Res. Lepid. 7:169–181.Google Scholar
  45. Von Euw, J., Fishelson, L., Parsons, J.A., Reichstein, T., andRothschild, M. 1967. Cardenolides (heart poisons) in a grasshopper feeding on milkweeds.Nature 214:35–39.Google Scholar
  46. Williams, C.B. 1958. Insect Migration. Collins, London, xiv + 235 pp.Google Scholar
  47. Williams, C.B., Cockbill, G.F., Gibbs, G.F., andDownes, M.E. 1942. Studies in the migration of Lepidoptera.Trans. R. Entomol. Soc. London 92:101–283.Google Scholar
  48. Woodson, R.E., Jr. 1954. The North American species ofAsclepias L.Ann. Mo. Bot. Garden 41:1–211.Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • L. P. Brower
    • 1
  • J. N. Seiber
    • 2
  • C. J. Nelson
    • 3
  • S. P. Lynch
    • 4
  • M. P. Hoggard
    • 1
  • J. A. Cohen
    • 1
  1. 1.Department of ZoologyUniversity of FloridaGainesville
  2. 2.Department of Environmental ToxicologyUniversity of CaliforniaDavis
  3. 3.Department of PharmacyUniversity of SydneySydneyAustralia
  4. 4.Department of Biological SciencesLouisiana State UniversityShreveport

Personalised recommendations