Discrete simulation of linear multidimensional continuous systems

  • R. Rabenstein


This paper presents the theoretical foundations of a new method for the discrete simulation of multidimensional systems, which are described by linear partial differential equations with constant coefficients. It is based on methods customary in linear systems theory and digital signal processing and uses a frequency-domain representation of the continuous system to be simulated. The selection of appropriate functional transformations for each variable yields an exact treatment of initial and boundary conditions. The heat-flow equation is treated as an example. For this case, a realizing structure for the simulating discrete system is given along with simulation examples.

Key Words

Continuous systems simulation partial differential equations numerical methods digital signal processing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Th. Meis and U. Marcowitz,Numerical Solution of Partial Differential Equations, New York: Springer Verlag, 1978.Google Scholar
  2. 2.
    A. Fettweis and G. Nitsche, “Transformation Approach to Numerically Integrating PDEs by Means of WDF Principles,”Multidimensional Systems and Signal Processing, vol. 2, 1991, pp. 127–159.Google Scholar
  3. 3.
    A. Fettweis and G. Nitsche, “Numerical Integration of Partial Differential Equations Using Principles of Multidimensional Wave Digital Filters,”Journal of VLSI Signal Processing, vol. 3, 1991, pp. 7–24.Google Scholar
  4. 4.
    C.-C.J. Kuo and B.C. Levy “Discretization and Solution of Elliptic PDEs — A Digital Signal Processing Approach,”Proc. IEEE, vol. 78, no. 12, December 1990, pp. 1808–1842.Google Scholar
  5. 5.
    R. Rabenstein, “A Signal Processing Approach to the Digital Simulation of Multi-Dimensional Continuous Systems,” inProc. Eur. Signal Processing Conf., The Hague, Netherlands, 1986, pp. 665–668.Google Scholar
  6. 6.
    R. Rabenstein, “Simulation of Distributed Linear Systems,” inProc. Eurosim Simulation Congress, Capri, Italy, September/October 1992.Google Scholar
  7. 7.
    H. W. Schüssler, A Signalprocessing Approach to Simulation,Frequenz, vol. 35, 1981, pp. 174–184.Google Scholar
  8. 8.
    R. Rabenstein, “Diskrete Simulation linearer mehrdimensionaler kontinuierlicher Systeme,” Ph.D. dissertation (in German), University Erlangen-Nürnberg, Germany, 1991.Google Scholar
  9. 9.
    G. Doetsch, “Integration von Differentialgleichungen vermittels der endlichen Fourier transformation,”Math. Annalen, vol. 112, 1936, pp. 52–68.Google Scholar
  10. 10.
    F. Oberhettinger and L. Badii,Tables of Laplace-Transforms, Berlin and New York: Springer Verlag, 1973.Google Scholar
  11. 11.
    A. Papoulis,Signal Analysis, New York: McGraw-Hill, 1977.Google Scholar
  12. 12.
    J. Gosse,Technical Guide to Thermal Processes, Cambridge: Cambridge University Press, 1986.Google Scholar
  13. 13.
    R. Rabenstein, “Design of FIR Digital Filters with Flatness Constraints for the Error Functions,”Circuits, Systems and Signal Processing, to appear.Google Scholar
  14. 14.
    R. Rabenstein, “A Signal Processing Approach to the Numerical Solution of Parabolic Differential Equations,” inProc. Second European Conf. Multigrid Methods, GMD-Study, no. 110, October 1985, pp. 133–144.Google Scholar
  15. 15.
    A.V. Oppenheim and A.S. Willsky,Signals and Systems, Englewood Cliffs, NJ: Prentice-Hall, 1983.Google Scholar
  16. 16.
    R. Sauer and I. Szabó,Mathematische Hilfsmittel des Ingenieurs Teil I, Berlin: Springer-Verlag, 1967.Google Scholar
  17. 17.
    R. Bracewell,The Fourier-Transform and its Applications, New York: McGraw-Hill, 1978.Google Scholar
  18. 18.
    A. Papoulis,The Fourier-Integral and its Applications, New York: McGraw-Hill, 1962.Google Scholar
  19. 19.
    H.W. Schüssler,Netzwerke, Signale und Systeme 2, Berlin and New York: Springer-Verlag, 3rd edition, 1991.Google Scholar
  20. 20.
    E.I. Jury,Theory and Application of the z-Transform-Method, New York: Wiley, 1964.Google Scholar
  21. 21.
    I.N. Sneddon,The Use of Integral Transforms, New York: McGraw-Hill, 1972.Google Scholar
  22. 22.
    R. Rabenstein, “Simulation of Linear Continuous Systems with Distributed Parameters,”Simulation Practice and Theory, to appear.Google Scholar
  23. 23.
    H. Krauss, R. Rabenstein, “Numerical Solution of the Telegraph Equation by Multidimensional Filters,” in A.G. Constantides et al. (eds.)Proc. DSP & CAES Conf., Nicosia, Cyprus, 1993, pp. 170–175.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • R. Rabenstein
    • 1
  1. 1.Lehrstuhl für NachrichtentechnikUniversity of Erlangen-NürnbergErlangenGermany

Personalised recommendations