Plant Systematics and Evolution

, Volume 202, Issue 1–2, pp 121–135 | Cite as

Enzyme analysis of genetic variation and relationships in diploid and polyploid taxa ofGalium (Rubiaceae)

  • Friedrich Ehrendorfer
  • Rosabelle Samuel
  • Wilhelm Pinsker


Allozyme variation at 11 loci (with 37 alleles) was studied electrophoretically in seven outbreeding, closely related diploid and tetraploid taxa, seven from sect.Leptogalium and two from sect.Leiogalium. Whereas the sections are clearly distinct by several different alleles, aggregates, species and subspecies differ only in the frequency or presence/absence of common alleles. The resulting dendrogram suggests phylogenetic relationships and is supported by other multidisciplinary evidence. Tetraploids have originated independently in several groups, and there is evidence for tetrasomic inheritance and thus for autopolyploidy in spite of normal meiotic bivalent pairing and partly suspected hybrid origin. Tetraploids differ from related diploids only little in number of alleles and expected heterozygosity within populations, but clearly exhibit higher numbers of genotypes. This often corresponds to their greater morphological variability, increased adaptive flexibility, and better colonizing capacity compared to related diploids.

Key words

Rubiaceae Galium Allozyme variation systematics ploidy level evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ayala, F. J., Powell, J. R., Tracey, M. L., Mourao, C. A., Perez-Salas, S., 1972: Enzyme variability in theDrosophila willistoni group. IV. Genetic variation in natural populations ofDrosophila willistoni. — Genetics70: 113–139.Google Scholar
  2. Brochmann, C., Soltis, D. E., Soltis, P. S., 1992: Electrophoretic relationships and phylogeny of nordic polyploids inDraba (Brassicaceae). — Pl. Syst. Evol.182: 35–70.Google Scholar
  3. Cavalli-Molina, S., Motta, E. P. V., Schiengold, M., Winge, H., 1989: Identical isoenzyme patterns in sib plants ofRelbunium hypocarpium (Rubiaceae). — Rev. Brasil. Genet.12: 361–368.Google Scholar
  4. Cai, Q., Macdonald, S. E., Chinnappa, C. C., 1990: Studies on theStellaria longipes complex (Caryophyllaceae): isozyme variability and the relationship betweenStellaria longipes andS. longifolia. — Pl. Syst. Evol.173: 129–141.Google Scholar
  5. Crawford, D. J., 1983: Phylogenetic and systematic inferences from electrophoretic studies. — InTanksley, S. D., Orton, T. J., (Eds): Isoenzymes in plant genetics and breeding, pp. 257–287. — Amsterdam: Elsevier.Google Scholar
  6. —, 1985: Electrophoretic data and plant speciation. — Syst. Bot.10: 405–416.Google Scholar
  7. —, 1990: Enzyme electrophoresis and plant systematics. — InSoltis, D. E., Soltis, P. S., (Eds): Isozymes in plant biology, pp. 146–164. — London: Chapman & Hall.Google Scholar
  8. —, 1984: Allozyme divergence and intraspecific variation inCoreopsis grandiflora (Compositae). — Syst. Bot.9: 219–225.Google Scholar
  9. Desrochers, A. M., Bohm, B. A., 1995: Biosystematic study ofLasthenia californica (Asteraceae). — Syst. Bot.20: 65–84.Google Scholar
  10. Ehrendorfer, F., 1949: Zur Phylogenie der GattungGalium I. Polyploidie und geographisch-ökologische Einheiten in der Gruppe desGalium pumilum Murray (Sect.Leptogalium Lange) im österreichischen Alpenraum. — Österr. Bot. Z.96: 109–138.Google Scholar
  11. —, 1962: Cytotaxonomische Beiträge zur Genese der mitteleuropäischen Flora und Vegetation. — Ber. Deutsch. Bot. Ges.75: 137–152.Google Scholar
  12. —, 1976:Rubiaceae, Galium. — InTutin, T. G., Heywood, V. H., Burges, N. A., Valentine, D. H., Walters, S. M., Webb, D. A., (Eds): Flora Europaea4: 14–36. — Cambridge: Cambridge University Press.Google Scholar
  13. Hamrick, J. L., 1990: Isozymes and the analysis of genetic structure in plant populations. — InSoltis, D. E., Soltis, P. S., (Eds): Isozymes in plant biology, pp. 87–105. — London: Chapman & Hall.Google Scholar
  14. —, 1989: Allozyme diversity in plant species. — InBrown, A. H. D., Clegg, M. T., Kahler, A. L., Weir, B. S., (Eds): Plant population genetics, breeding and genetic resources, pp. 43–63. — Sunderland, Ma.: Sinauer.Google Scholar
  15. —, 1979: Relationships between life history characteristics and electrophoretically detectable genetic variation in plants. — Annu. Rev. Ecol. Syst.10: 173–200.Google Scholar
  16. Harris, H., Hopkinson, D. A., 1976: Handbook of enzyme electrophoresis in human genetics. — Amsterdam: North-Holland.Google Scholar
  17. Hauber, D. P., 1986: Autotetraploidy inHaplopappus spinulosus hybrids: evidence from natural and synthetic tetraploids. — Amer. J. Bot.73: 1595–1606.Google Scholar
  18. Huber, W., Leuchtmann, A., 1992: Genetic differentiation of theErigeron species (Asteraceae) in the Alps: a case of unusual allozymic uniformity. — Pl. Syst. Evol.183: 1–16.Google Scholar
  19. Hurka, H., 1993: Isozymes in population genetic studies. — InLieth, H., Al Masoom, A., (Eds): Towards the rational use of high salinity tolerant plants,2, pp. 75–82. — The Netherlands: Kluwer.Google Scholar
  20. —, 1989: Aspartate aminotransferase isozyme in the genusCapsella (Brassicaceae): Subcellular location, gene duplication, and polymorphism. — Biochem. Gen.27: 77–90.Google Scholar
  21. Jaaska, V., 1994: Isoenzyme evidence on the systematics ofHordeum sectionMarina (Poaceae). — Pl. Syst. Evol.191: 213–226.Google Scholar
  22. Krendl, F., 1967: Cytotaxonomie derGalium mollugo-Gruppe in Mitteleuropas. — Österr. Bot. Z.114: 508–549.Google Scholar
  23. —, 1993: Chromosomenzahlen und geographische Verbreitung in der GattungGalium (Sect.Leptogalium-Rubiaceae). — Biosyst. Ecol. Ser.4: 51–112. — Wien: Österr. Akad. Wiss.Google Scholar
  24. Loveless, M. D., Hamrick, J. L., 1984: Ecological determinants of genetic structure in plant populations. — Annu. Rev. Ecol. Syst.15: 65–95.Google Scholar
  25. Lowrey, T. K., Crawford, D. J., 1985: Allozyme divergence and evolution inTetramolopium (Compositae, Asteraceae) in the Hawaiian Islands. — Syst. Bot.10: 64–72.Google Scholar
  26. Lumaret, R., 1985: Phenotypic and genotypic variation within and between populations of the polyploid complex,Dactylis glomerata L. — InHaeck, J., Woldendorp, J. W., (Eds): Structure and functioning of plant populations,2: phenotypic and genotypic variation in plant populations, pp. 343–353. — Amsterdam: North-Holland.Google Scholar
  27. —, 1987: Mise en évidence d'un écotype de dactyle (Dactylis glomerata L.) de pelouses dolomitiques subalpines dans les Grisons (Suisse): origine et échanges géniques avec les dactyles des prairies adjacentes. — Ecol. Plant8: 3–20.Google Scholar
  28. —, 1990: Phylogenetic relationships and gene flow between sympatric diploid and tetraploid plants ofDactylis glomerata (Gramineae). — Pl. Syst. Evol.169: 81–96.Google Scholar
  29. Macdonald, S. E., Chinnappa, C. C., 1988: Patterns of variation in theStellaria longipes complex: Effects of polyploidy and natural selection. — Amer. J. Bot.75: 1191–2000.Google Scholar
  30. Manen, J. F., Natali, A., Ehrendorfer, F., 1994: Phylogeny ofRubiaceae-Rubieae inferred from the sequence of a cpDNA intergene region. — Pl. Syst. Evol.190: 195–211.Google Scholar
  31. Mcleod, M. J., Guttman, S. I., Eshbaugh, W. H., Rayle, R. E., 1983: An electrophoretic study of evolution inCapsicum (Solanaceae). — Evolution37: 562–574.Google Scholar
  32. Meusel, H., Jäger, E. J., 1992: Vergleichende Chorologie der zentraleuropäischen Flora3. — Stuttgart: G. Fischer.Google Scholar
  33. Natali, A., Manen, J. F., Ehrendorfer, F., 1995: Phylogeny of theRubiaceae-Rubioideae, in particular the tribeRubieae: evidence from a non-coding chloroplast DNA sequence. — Ann. Missouri Bot. Gard.82: 428–439.Google Scholar
  34. Nei, M., 1972: Genetic distance between populations. — Amer. Nat.106: 283–292.Google Scholar
  35. Pedrola-Monfort, J., Caujapé-Castells, J., 1994: Allozymic and morphological relationships amongAndrocymbium gramineum, A. europaeum, andA. psammophilum (Colchicaceae). — Pl. Syst. Evol.191: 111–126.Google Scholar
  36. Qiu, Y. L., Parks, C. R., 1994: Disparity of allozyme variation level in threeMagnolia (Magnoliaceae) species from the southeastern United States. — Amer. J. Bot.81: 1300–1308.Google Scholar
  37. Raelson, J. V., Grant, W. F., 1988: Evaluation of hypotheses concerning the origin ofLotus corniculatus (Fabaceae) using isoenzyme data. — Theor. Appl. Genet.76: 267–276.Google Scholar
  38. Samuel, R., Pinsker, W., Ehrendorfer, F., 1990: Allozyme polymorphism in diploid and polyploid populations ofGalium. — Heredity65: 369–378.Google Scholar
  39. —, 1995: Electrophoretic analysis of genetic variation within and between populations ofQuercus cerris, Q. pubescens, Q. petraea andQ. robur (Fagaceae) from eastern Austria. — Bot. Acta108: 290–299.Google Scholar
  40. Shore, J. S., 1991: Tetrasomic inheritance and isozyme variation inTurnera ulmifolia vars.elegans Urb. andintermedia Urb. (Turneraceae). — Heredity66: 305–312.Google Scholar
  41. Šipošová, H., 1987: A taxonomic-chorological study of theGalium pumilum Murray s.l. in Slovakia. — Acta Bot. Slov., ser. A. Tax. Geobot.10: 97–169.Google Scholar
  42. Sneath, P. H. A., Sokal, R. R., 1973: Numerical taxonomy. — San Francisco: Freeman.Google Scholar
  43. Soltis, D. E., Soltis, P. S., 1988: Electrophoretic evidence for tetrasomic segregation inTolmiea menziesii (Saxifragaceae). — Heredity60: 375–382.Google Scholar
  44. —, 1990: Isoenzymes in plant biology. — London: Chapman & Hall.Google Scholar
  45. —, 1993: Molecular data and the dynamic nature of polyploidy. — Crit. Rev. Pl. Sc.12: 243–273.Google Scholar
  46. Wells, T. C., Bohm, B. A., 1994: Isozyme variation in North AmericanMenziesia (Ericaceae). — Syst. Bot.19: 407–423.Google Scholar
  47. Wilson, H. D., Barber, S. C., Walter, T., 1983: Loss of duplicate gene expression in tetraploidChenopodium. — Biochem. Syst. Ecol.11: 7–13.Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Friedrich Ehrendorfer
    • 1
  • Rosabelle Samuel
    • 1
  • Wilhelm Pinsker
    • 2
  1. 1.Institut für Botanik und Botanischer GartenUniversität WienWienAustria
  2. 2.Institut für Allgemeine Biologie, AG GenetikUniversität WienWienAustria

Personalised recommendations