Plant Systematics and Evolution

, Volume 202, Issue 1–2, pp 87–109 | Cite as

Genetic variation and natural hybridization betweenOrchis laxiflora andOrchis palustris (Orchidaceae)

  • Paola Arduino
  • Federica Verra
  • Rossella Cianchi
  • Walter Rossi
  • Bruno Corrias
  • Luciano Bullini


Genetic divergence between population samples ofOrchis laxiflora and ofO. palustris from various European locations was studied by electrophoretic analysis of 25 enzyme loci. An average genetic distance of DNei = 1.24 was found between the two taxa, with 12 out of 25 loci showing alternative alleles (diagnostic loci). Genetic heterogeneity was observed within bothO. laxiflora andO. palustris, when northern and southeastern populations were compared, being lower in the former taxon (D = 0.06), than in the latter (D = 0.16). Karyologically, 2n = 36 was found for bothO. laxiflora andO. palustris. O. laxiflora andO. palustris produce hybrids, described asO. ×intermedia. Genotype analysis of several sympatric samples showed the presence of hybrid zones, including F1 hybrids and, in low proportions, recombinant classes, putatively assigned to Fn and backcrosses, as well as a few introgressed individuals of both taxa. These data indicate that hybrids are only partially fertile, with a very limited mixing up of the two parental gene pools; this is also shown by the lack of significant lowering of genetic distances when sympatric and allopatric heterospecific samples are compared. Accordingly,O. laxiflora andO. palustris form a syngameon; nevertheless they can be considered as good taxonomic species, with virtually distinct gene pools, which evolve independently. The genetic variability inO. laxiflora andO. palustris is remarkably low (\(\bar H\)e = 0.05 and\(\bar H\)e = 0.02, respectively). In particular, nearly complete absence of polymorphic loci was found inO. palustris from northcentral Europe. Two hypotheses are considered to explain the low genetic variability of this endangered species.

Key words

Orchidaceae Orchis laxiflora O. palustris Isozymes genetic structure gene flow genetic distance chromosome number hybridization biochemical taxonomy endangered species 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arduino, P., Cianchi, R., Rossi, W., Corrias, B., Bullini, L., 1995: Genetic variation inOrchis papilionacea (Orchidaceae) from Central Mediterrancean region: taxonomic inferences at the intraspecific level. — Pl. Syst. Evol.194: 9–23.Google Scholar
  2. Baumann, H., Künkele, S., 1992: Die wildwachsenden Orchideen Europas. — Stuttgart: Kosmos.Google Scholar
  3. —, 1988: Die Orchideen Europas. — Stuttgart: Kosmos.Google Scholar
  4. Bianco, P., Medagli, P., D'Emerico, S., Ruggiero, L., 1987: Numeri cromosomici per la Flora italiana: 1139–1155. — Inform. Bot. Ital.19: 322–332.Google Scholar
  5. Brewer, G. J., Sing, C. F., 1970: An introduction to isozyme techniques. — New York, London: Academic Press.Google Scholar
  6. Buttler, K. P., 1986: Orchideen. Die wildwachsenden Arten und Unterarten Europas, Vorderasiens und Nordafrikas. — München: Mosaik.Google Scholar
  7. —, 1979: Morphologische und geographische Differenzierung beiOrchis palustris. — Bot. Jahrb. Syst.101: 91–134.Google Scholar
  8. Camus, E. G., Camus, A., 1929: Iconographie des orchidées d'Europe et du bassin mediterranéen. — Paris.Google Scholar
  9. Capineri, R., Rossi, W., 1988: Numeri cromosomici per la Flora italiana: 1127–1135. — Inform. Bot. Ital.19: 314–318.Google Scholar
  10. Cheliak, W. M., Pitel, J. A., 1984: Techniques for starch gel electrophoresis of enzymes from forest tree species. — Inf. Rep. Pl-X-42, Petawawa Natl. Forestry Inst., Canadian Forestry Service.Google Scholar
  11. Corrias, B., Rossi, W., Arduino, P., Cianchi, R., Bullini, L., 1991:Orchis longicornu Poiret in Sardinia: genetic, morphological and chorological data. — Webbia45: 71–101.Google Scholar
  12. Crow, J. F., Aoki, K., 1984: Group selection for a polygenic behavioral trait: estimating the degree of population subdivision. — Proc. Natl. Acad. Sci. USA81: 6073–6077.Google Scholar
  13. Del Prete, C., 1978: Contributi alla conoscenza delleOrchidaceae di Italia. — Inform. Bot. Ital.10: 379–389.Google Scholar
  14. D'Emerico, S., Bianco, P., Medagli, P., Ruggiero, L., 1990: Karyological studies of some taxa of the generaHimantoglossum, Orchis, Serapias andSpiranthes (Orchidaceae) from Apulia (Italy). — Caryologia43: 267–276.Google Scholar
  15. —, 1993: Cytological and karyological studies onOrchidaceae. — Caryologia46: 309–319.Google Scholar
  16. Grant, V., 1957: The plant species in theory and practice. — InMayr, E., (Ed): The species problem, pp. 39–80. — Washington, D.C.: Amer. Assoc. Adv. Sci. Publ.50.Google Scholar
  17. Hamrick, J. L., Godt, M. J. W., 1990: Allozyme diversity in plant species. — InBrown, A. D. H., Clegg, M. T., Kahler, A. L., Weir, B. S., (Eds): Plant population genetics, breeding and genetic resources, pp. 43–63. — London, New York: Sinauer.Google Scholar
  18. Harris, H., 1966: Enzymes polymorphism in man. — Proc. Roy. Soc. London, Ser. B., Biol. Sci.164: 298–310.Google Scholar
  19. Hewitt, G., 1996: Some genetic consequences of ice ages, and their role in divergence and speciation. — Biol. J. Linn. Soc.56: (in press).Google Scholar
  20. Högström, S., 1991:Orchis palustris, its history and present status on Gotland, Sweden. — Svensk Bot. Tidskr.85: 355–376.Google Scholar
  21. Keller, G., Soò, R., von, 1932: Monographie und Iconographie der Orchideen Europas und des Mittelmeergebietes 2. — Berlin, Dahlem.Google Scholar
  22. Koehn, R. K., Eanes, W. F., 1978: Molecular structure and protein variation within and among populations. — Evol. Biol.11: 39–100.Google Scholar
  23. Liverani, P., 1992: Orchidee-specie spontanee. — Edisar.Google Scholar
  24. Lönn, M., Prentice, H. C., Tegelström, H., 1995: Genetic differentiation inHippocrepis emerus (Leguminosae): allozyme and DNA fingerprint variation in disjunct Scandinavian populations. — Molec. Ecol.4: 39–48.Google Scholar
  25. Nei, M., 1972: Genetic distance between populations. — Amer. Naturalist106: 283–292.Google Scholar
  26. —, 1973: Analysis of gene diversity in subdivided populations. — Proc. Natl. Acad. Sci. USA70: 3321–3323.Google Scholar
  27. —, 1977: F-statistics and analysis of gene diversity in subdivided populations. — Ann. Hum. Genet.41: 225–233.Google Scholar
  28. —, 1987: Molecular evolutionary genetics. — New York: Columbia University Press.Google Scholar
  29. Rogers, J. S., 1972: Measures of genetic similarity and genetic distance. — Studies in Genetics VII, Univ. Texas Publ. (Austin)7213: 145–153.Google Scholar
  30. Romano, S., Campo, G., 1995: Numeri cromosomici per la flora italiana: 1336–1340. — Inform. Bot. Ital.27: 17–20.Google Scholar
  31. Rossi, W., Corrias, B., Arduino, P., Cianchi, R., Bullini, L., 1992a: Gene variation and gene flow inOrchis morio (Orchidaceae) from Italy. — Pl. Syst. Evol.179: 43–58.Google Scholar
  32. —, 1992b: A new natural hybrid in the genusOrchis L.: genetic data and description. — Lindleyana7: 121–126.Google Scholar
  33. Sarich, V., 1977: Rates, sample sizes and the neutrality hypothesis for electrophoresis in evolutionary studies. — Nature265: 24–28.Google Scholar
  34. Scacchi, R., De Angelis, G., 1989: Isoenzyme polymorphism inGymnadenia conopsea and its inferences for systematics within this species. — Biochem. Syst. Ecol.17: 25–33.Google Scholar
  35. —, 1990: Allozyme variation among and within elevenOrchis species (fam.Orchidaceae), with special reference to hybridizing aptitude. — Genetica81: 143–150.Google Scholar
  36. —, 1991: Effect of the breeding system on the genetic structure in threeCephalantera spp. (Orchidaceae). — Pl. Syst. Evol.176: 53–61.Google Scholar
  37. Schlechter, R., 1928: Monographie und Iconographie der Orchideen Europas und des Mittelmeergebietes 1. — Berlin, Dahlem.Google Scholar
  38. Schlegel, M., Steinbrück, G., Hahn, K., Röttger, B., 1989: Interspecific relationships of ten European orchid species as revealed by enzyme electrophoresis. — Pl. Syst. Evol.163: 107–119.Google Scholar
  39. Scrugli, A., 1977: Numeri cromosomici per la Flora Italiana. — Inform. Bot. Ital.14: 275–279.Google Scholar
  40. —, 1981: Sul numero cromosomico diOrchis laxiflora Lam. — Inform. Bot. Ital.13: 119–121.Google Scholar
  41. Selander, R. K., Smith, M. H., Yang, S. Y., Johnson, W. E., Gentry, J. B., 1971: Biochemical polymorphism and systematics in the genusPeromyscus. I. Variation of the oldfield mouse (Peromyscus polionotus). — Studies in Genetics VI, Univ. Texas Publ. (Austin)7103: 49–90.Google Scholar
  42. Slatkin, M., Barton, N. H., 1989: A comparison of three indirect methods for estimating average levels of gene flow. — Evolution43: 1349–1368.Google Scholar
  43. Sokal, R. R., Rohlf, F. J., 1981: Biometry. 2nd edn. — San Francisco: Freeman.Google Scholar
  44. Soltis, D. E., Haufler, C. H., Darrow, D. C., Gastony, G. J., 1983: Starch gel electrophoresis of ferns: a compilation of grinding buffers, gel and electrode buffers and staining schedules. — Amer. Fern J.73: 9–27.Google Scholar
  45. Soó, R. von, 1980:Dactylorhiza, Orchis. — InTutin, T. G., Heywood, V. H., Burges, N. A., Valentine, D. H., Walters, S. M., Webb, D. A., (Eds): Flora Europaea5, pp. 341–342. — Cambridge: Cambridge University Press.Google Scholar
  46. Steinbrück, G., Schlegel, M., Dahlström, I., Röttger, B., 1986: Characterization of interspecific hybrids betweenOrchis mascula andO. pallens (Orchidaceae) by enzyme electrophoresis. — Pl. Syst. Evol.153: 229–241.Google Scholar
  47. Vermeulen, P., 1947: Studies on Dactylorchids. — Utrecht.Google Scholar
  48. —, 1949: Varieties and forms of Dutch orchids. — Ned. Kruidk. Arch.56: 204–242.Google Scholar
  49. Wilkinson, L., Leland, J., 1989: SYSTAT: the system for statistics. — Evanston, Illinois: SYSTAT Inc.Google Scholar
  50. Workman, P. L., Niswander, J. D., 1970: Population studies on southwestern Indian tribes. II. Local genetic differentiation in the Papago. — Amer. J. Hum. Genet.22: 24–49.Google Scholar
  51. Wright, S., 1931: Evolution in Mendelian populations. — Genetics16: 97–159.Google Scholar
  52. —, 1943: Isolation by distance. — Genetics28: 114–138.Google Scholar
  53. —, 1951: The genetical structure of populations. — Ann. Eugen.15: 323–354.Google Scholar
  54. —, 1978: Evolution and the genetics of populations. 4. Variability within and among natural populations. — Chicago: University of Chicago Press.Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Paola Arduino
    • 1
  • Federica Verra
    • 1
  • Rossella Cianchi
    • 1
  • Walter Rossi
    • 2
  • Bruno Corrias
    • 3
  • Luciano Bullini
    • 1
  1. 1.Dept. Genetics and Molecular BiologyUniv. Rome “La Sapienza”RomeItaly
  2. 2.Dept. Environmental SciencesUniv. L'Aquila, CoppitoL'AquilaItaly
  3. 3.Dept. Botany and Plant EcologyUniv. SassariSassariItaly

Personalised recommendations