Plant Systematics and Evolution

, Volume 214, Issue 1–4, pp 211–218 | Cite as

Genome characterization and relationships between two species of the genusLobelia (Campanulaceae) determined by repeated DNA sequences

  • A. L. L. Vanzela
  • A. Cuadrado
  • A. O. S. Vieira
  • N. Jouve
Article

Abstract

Three repeated DNA sequences (rDNA 5S, 18S-5.8S-26S and telomeric repeats) were localised in the genomes ofLobelia brasiliensis andL. imperialis var.kanitzii (subg.Tupa), both with 2n = 28, by fluorescence in situ hybridization (FISH). The results were used to analyse the genomic relationship between the species. With probe pTa71, the karyotypes of these species showed only one NOR site. Probe pTa794, which contains 5S rDNA, demonstrated differences between the species. Telomeric sequences, studied with probe pLT11, were not detected in ectopic sites, but different telomeres showed signals of varying intensity. Based on the results obtained, considerations are made on karyotype evolution inLobelia.

Key words

Campanulaceae Lobelia Angiosperms in situ hybridization karyotype evolution rDNA telomere 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aboo, S., Miller, T. E., Reader, S. M., Dunford, R. P., King, Y. P., 1994: Detection of ribosomal DNA sites in lentil and chickpea by fluorescence in situ hybridization. — Genome37: 713–716.Google Scholar
  2. Appels, R., Honeycutt, R. L., 1986: Evolution over a billion years. — InDutta, S. K., (Ed.): DNA systematics II. Plant DNA, pp. 81–125. — Boca Raton, FL: CRC Press.Google Scholar
  3. —, 1980: Molecular and chromosomal organization of DNA sequences coding for the ribosomal RNAs in cereals. — Chromosoma78: 293–311.Google Scholar
  4. Biessmann, H., Mason, J. M., 1994: Telomeric repeat sequences. — Chromosoma103: 154–161.Google Scholar
  5. Blackburn, E. H., 1991: Structure and functions of telomeres. — Nature350: 569–573.Google Scholar
  6. Bustos, A., Cuadrado, A., Jouve, N., 1996: Physical mapping of repetitive DNA sequences and 5S and 18S-26S rDNA in five wild species of the genusHordeum. — Chromosome. Res.4: 491–499.Google Scholar
  7. Castilho, A., Heslop-Harrison, J. S., 1995: Physical mapping of 5S and 18S–25S rDNA and repetitive DNA sequences inAegilops umbellulata. — Genome38: 91–96.Google Scholar
  8. Cuadrado, A., Jouve, N., 1994: Mapping and organization of highly-repeated DNA sequences by means of simultaneous and sequential FISH and C-banding in 6×-Triticale. — Chromosome. Res.2: 231–338.Google Scholar
  9. —, 1995: Physical mapping of the 5S rRNA multigene family in 6× triticale and rye: identification of a new rye locus. — Genome38: 623–626.Google Scholar
  10. Fuchs, J., Brandes, A., Schubert, I., 1995: Telomere sequence localization and karyotype evolution in higher plants. — Pl. Syst. Evol.196: 227–241.Google Scholar
  11. Gerlach, W. L., Bedbrook, J. R., 1979: Cloning and characterization of ribosomal RNA genes from wheat and barley. — Nucl. Acids Res.7: 1869–1885.Google Scholar
  12. —, 1980: Sequence organization of the repeating units in the nucleus of wheat which contain 5S rDNA genes. — Nucl. Acids Res.8: 4851–4865.Google Scholar
  13. Guerra, M., Kenton, A., 1996: Distribution of telomere DNA in mitotic and polytene nuclei of the anther tapetum of a tetraploid hybrid bean,Phaseolus vulgaris ×P. acutifolius. — Revista Brasil. Genét.19: 313–318.Google Scholar
  14. Heslop-Harrison, J. S., 1994: Molecular cytogenetics and the organization of plant chromosomes. — In INTRA (Ed.): Techniques et utilization des maqueurs molécularies, pp. 107–115. — Montpellier, France.Google Scholar
  15. —, 1991: In situ hybridization with automated chromosome denaturation. — J. Meth. Cell Molec. Biol.3: 109–106.Google Scholar
  16. Kenton, A., Parokonny, A., Bennett, S. T., Bennett, M. D., 1993: Does genome organization influence speciation? A reappraisal of karyotype studies in evolutionary biology. — In The Linnean Society of London, (Ed.): Evolutionary patterns and process, pp. 189–206. — London, UK.Google Scholar
  17. Lammers, T. G., 1993: Chromosome numbers ofCampanulaceae. III. Review and integration of data for subfamilyLobelioideae. — Amer. J. Bot.80: 660–675.Google Scholar
  18. Lapitan, N. L. V., 1991: Organization and evolution of higher plant nuclear genomes. — Genome35: 171–181.Google Scholar
  19. Leitch, I. J., Heslop-Harrison, J. S., 1992: Physical mapping of the 18S-5.8S-26S rDNA genes in barely by in situ hybridization. — Genome35: 1013–1018.Google Scholar
  20. Linares, C., Gonzáles, J., Ferrer, E., Fominaya, A., 1996: The use of double fluorescence in situ hybridization to physically map the positions of 5S rDNA genes in relation to the chromosomal location of 18S-5.8S-26S rDNA and a C genome specific DNA sequence in the genusAvena. — Genome39: 535–542.Google Scholar
  21. Mascia, P. N., Rubenstein, Y., Phillips, R. L., Wang, A. S., Lu, Z. X., 1981: Localization of the 5S rDNA genes and evidence for diversity in the 5S rDNA region in maize. — Gene15: 7–20.Google Scholar
  22. Panzera, F., Gimenéz-Abián, M. Y., López-Sáez, J. F., Gimenéz-Martín, G., Cuadrado, A., Shaw, P. J., Beven, A. F., Cánovas, J. L., De la Torre, C., 1996: Nucleolar organizer expression inAllium cepa L. Chromosomes. — Chromosoma105: 12–19.Google Scholar
  23. Rawlins, D. J., Higett, M. I., Shaw, P. J., 1991: Localization of telomeres in plant interphase nuclei by in situ hybridization and 3D confocal microscopy. — Chromosoma100: 424–431.Google Scholar
  24. Reddy, P., Appels, R., 1989: A second locus for the 5S multigene family inSecale L.: sequence divergence in two lineages of the family. — Genome32: 456–467.Google Scholar
  25. Richards, E. J., Ausubel, F. M., 1988: Isolation of a higher eukaryotic telomere fromArabidopsis thaliana. — Cell53: 127–136.Google Scholar
  26. Rogers, S. O., Honda, S., Bendich, A. J., 1986: Variation in the ribosomal genes among individuals ofVicia faba. — Pl. Molec. Biol.6: 339–345.Google Scholar
  27. Schwarzacher, T., Heslop-Harrison, J. S., 1991: In situ hybridization to plant telomeres using synthetic oligomers. — Genome34: 317–323.Google Scholar
  28. Leitch, A. R., Bennett, M. D., Heslop-Harrison, J. S., 1989: In situ hybridization of parental genomes in a wide hybrid. — Ann. Bot.64: 315–324.Google Scholar
  29. Scoles, G. J., Gill, B. S., Xin, Z. Y., Clarke, B. C., McIntyre, C. L., Chapman, C., Appels, R., 1988: Frequent duplication and deletion events in the 5S RNA genes and the associated spacer regions of theTriticeae. — Pl. Syst. Evol.160: 105–122.Google Scholar
  30. Stace, H. M., James, S. H., 1996: Another perspective on cytoevolution inLobelioideae (Campanulaceae). — Amer. J. Bot.83: 1356–1364.Google Scholar
  31. Vanzela, A. L. L., Bernini, C., Ruas, P. M., Ruas, C. F., Vieira, A. O. S., 1993: Análise cariotípica emLobelia L. (Campanulaceae). — Revista Brasil. Genét.16: 190.Google Scholar
  32. —, 1994: Coloração DAPI, CMA e quinacrina em quatro espécies deLobelia (Campanulaceae). — Revista Brasil. Genét.17: 161.Google Scholar
  33. Vieira, A. O. S., 1988: Estudos taxonômicos das espécies deLobelia L. (Campanulaceae Juss.) que ocorrem no Brasil. — MsC. Dissertação, Uiniversidade Estadual de Campinas, Campinas-SP, Brazil.Google Scholar
  34. -Shepherd, G. J., 1997: A new species ofLobelia (Campanulaceae) from Brazil. Novon (in press).Google Scholar
  35. Werner, J. A., Kota, R. S., Gill, B. K., 1992: Distribution of telomere repeats and their role in the healing of broken chromosome ends in wheat. — Genome35: 844–848.Google Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • A. L. L. Vanzela
    • 1
  • A. Cuadrado
    • 2
  • A. O. S. Vieira
    • 3
  • N. Jouve
    • 2
  1. 1.Departmento de Botânica, Instituto de BiociênciasUniversidade de São PauloSão PauloBrazil
  2. 2.Departmento de Biología Celular y GenéticaUniversidade de AlcaláAlcalá de Henares (Madrid)Spain
  3. 3.Departamento de Biologia Animal e Vegetal, CCBUniversidade Estadual de LondrinaLondrinaBrazil

Personalised recommendations