Plant Systematics and Evolution

, Volume 219, Issue 3–4, pp 181–197 | Cite as

Morphological evolution and ecological diversification of the forest-dwelling poppies (Papaveraceae: Chelidonioideae) as deduced from a molecular phylogeny of the ITS region

  • Frank R. Blattner
  • Joachim W. Kadereit
Article

Abstract

Sequences of the ITS region of nrDNA were analyzed for the seven genera of Papaveraceae subf. Chelidonioideae s.str. Three major clades can be recognized. These are 1.Chelidonium/Hylomecon/Stylophorum, 2.Eomecon/Sanguinaria, and 3.Bocconia/Macleaya. The monophyly of genera in the first of these three clades is doubtful, and clades two and three are sister to each other. Use of the ITS phylogeny of the subfamily to trace its morphological and ecological evolution shows that morphological change is concentrated in theBocconia/Macleaya clade, and probably related to the evolution of wind-pollination from insect-pollination in these two genera after habitat shift.

Key words

Papaveraceae Bocconia Chelidonium Eomecon Hylomecon Macleaya Sanguinaria Stylophorum phylogenetic analysis ITS morphological evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnheim N. (1983) Concerted evolution in multigene families. In: Nei M., Koehn R. (eds.) Evolution of genes and proteins. Sinauer, Sunderland, pp. 38–61.Google Scholar
  2. Arnheim N., Krystal M., Schmickel R., Wilson G., Ryder O., Zimmer E. (1980) Molecular evidence for genetic exchanges among ribosomal genes on nonhomolgous chromosomes in man and apes. Proc. Natl. Acad. Sci. USA 77: 7323–7327.PubMedGoogle Scholar
  3. Baldwin B. G. (1992) Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the Compositae. Mol. Phyl. Evol. 1: 3–16.Google Scholar
  4. Baldwin B. G., Sanderson M. J., Porter J. M., Wojciechowski M. F., Campbell C. S., Donoghue M. J. (1995) The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann. Missouri Bot. Gard. 82: 247–277.Google Scholar
  5. Bandelt H.-J., Dress A. W. M. (1992) Split decomposition: a new and useful approach to phylogenetic analysis of distance data. Mol. Phyl. Evol. 1: 242–252.Google Scholar
  6. Bersillon G. (1955) Recherches sur les papavéracées; contribution à létude du developpement des dicotylédones herbacées. Ann. Sci. Nat. Bot. XI. 16: 225–448.Google Scholar
  7. Blackmore S., Stafford P., Persson V. (1995) Palynology and systematics of Ranunculiflorae. Plant Syst. Evol., Suppl. 9: 71–82.Google Scholar
  8. Blattner F. R., Kadereit J. W. (1995) Three intercontinental disjunctions in Papaveraceae subfamily Chelidonioideae: evidence from chloroplast DNA. Plant Syst. Evol., Suppl. 9: 147–157.Google Scholar
  9. Böhle U.-R., Hilger H. H., Martin W. F. (1996) Island colonization and evolution of insular woody habit inEchium L. (Boraginaceae). Proc. Natl. Acad. Sci. USA 93: 11740–11745.PubMedGoogle Scholar
  10. Bremer K. (1988) The limits of amino acid sequence data in angiosperm phylogenetic reconstructions. Evolution 42: 795–803.Google Scholar
  11. Brückner C. (1982) Zur Kenntnis der Fruchtmorphologie der Papaveraceae Juss. s. str. und der Hypecoaceae (Prantl and Kündig) Nak. Feddes Repert. 93: 153–212.Google Scholar
  12. Brückner C. (1983) Zur Morphologie der Samenschale in den Papaveraceae Juss. s. str. und Hypecoaceae (Prantl and Kündig) Nak. Feddes Repert. 94: 361–405.Google Scholar
  13. Buckler IV E. S., Ippolito A., Holtsford T. P. (1997) The evolution of ribosomal DNA: divergent paralogues and phylogenetic implications. Genetics 145: 821–832.PubMedGoogle Scholar
  14. Carlquist S. (1974) Island biology. Columbia Univ. Press, New York.Google Scholar
  15. Crawford D. J., Stuessy T. F., Cosner M. B., Haines D. W., Silva O., M., Baeza M. (1992) Evolution of the genusDendroseris (Asteraceae: Lactuceae) on the Juan Fernandez Islands: evidence from chloroplast and ribosomal DNA. Syst. Bot. 17: 676–682.Google Scholar
  16. Donoghue M. J., Olmstead R. G., Smith J. F., Palmer J. D. (1992) Phylogenetic relationships of Dipsacales based onrbcL sequences. Ann. Missouri Bot. Gard. 79: 333–345.Google Scholar
  17. Dover G. (1982) Molecular drive: a cohesive mode of species evolution. Nature 229: 111–117.Google Scholar
  18. Doyle J. J., Doyle J. L. (1987) A rapid DNA isolation procedure for small amounts of fresh leaf tissue. Phytochem. Bull. 19: 11–15.Google Scholar
  19. Ernst W. R. (1962a) A comparative morphology of the Papaveraceae. Ph.D. Thesis, Stanford University.Google Scholar
  20. Ernst W. R. (1962b) The genera of Papaveraceae and Fumariaceae in the southeastern United States. J. Arnold Arbor. 63: 315–343.Google Scholar
  21. Farris J. S. (1989) The retention index and the rescaled consistency index. Cladistics 5: 417–419.Google Scholar
  22. Fedde F. (1909) Papaveraceae — Hypecoideae et Papaveraceae — Papaveroideae. In: Engler A. (ed.) Das Pflanzenreich, IV, 104. Engelmann, Leipzig, pp. 1–430.Google Scholar
  23. Fedde F. (1936) Papaveraceae. In: Engler A., Harms H. (eds.) Die natürlichen Pflanzenfamilien, 17b, 2nd edn. Engelmann, Leipzig, pp. 5–145.Google Scholar
  24. Felsenstein J. (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17: 368–376.PubMedGoogle Scholar
  25. Felsenstein J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.Google Scholar
  26. Felsenstein J. (1993) PHYLIP (Phylogeny Inference Package) version 3.57c. Dept. of Genetics, University of Washington, Seattle.Google Scholar
  27. Feng R.-Z., Lian W.-Y., Fu G.-X., Xiao P.-G. (1985) Chemotaxonomy and resource utilization of the tribe Chelidonieae (Papaveraceae). Acta Phytotax. Sinica 23: 36–42.Google Scholar
  28. Fitch W. M. (1971) Toward defining the course of evolution: minimal change for specific tree topology. Syst. Zool. 20: 406–416.Google Scholar
  29. Givnish T. J. (1988) Adaptation to sun vs. shade: a whole plant perspective. Australian J. Plant Phys. 15: 63–92.Google Scholar
  30. Givnish T. J., Sytsma K. J., Smith J. F., Hahn W. J. (1995) Molecular evolution, adaptive radiation, and geographic speciation inCyanea (Campanulaceae, Lobelioideae). In: Wagner W. L., Funk V. A. (eds.) Hawaiian biogeography. Evolution on a hot spot archipelago. Smithonian Institution Press, Washington, pp. 288–337.Google Scholar
  31. Gleissberg S., Kadereit J. W. (1999) Evolution of leaf morphogenesis: evidence from developmental and phylogenetic data in Papaveraceae. Int. J. Plant Sci. 160: 787–794.Google Scholar
  32. Günther K.-F. (1975) Beiträge zur Morphologie und Verbreitung der Papaveraceae. 1. Teil: Infloreszenzmorphologie der Papaveraceae; Wuchsform der Chelidonieae. Flora 164: 185–234.Google Scholar
  33. Hershkovitz M. A., Lewis L. A. (1996) Deep-level diagnostic value of the rDNA-ITS region. Mol. Biol. Evol. 13: 1276–1295.PubMedGoogle Scholar
  34. Hershkovitz M. A., Zimmer E. A. (1996) Conservation patterns in angiosperm rDNA ITS2 sequences. Nucl. Acids Res. 24: 2857–2867.PubMedGoogle Scholar
  35. Hillis D. M., Huelsenbeck J. P. (1992) Signal, noise, and reliability in molecular phylogenetic analyses. J. Heredity 83: 189–195.Google Scholar
  36. Hoot S. B., Kadereit J. W., Blattner F. R., Jork K. B., Schwarzbach A. E., Crane P. R. (1997) Data congruence and phylogeny of the Papaveraceae s.1. based on four data sets:atpB andrbcL sequences,trnK restriction sites, and morphological characters. Syst. Bot. 22: 573–590.Google Scholar
  37. Huson D. H. (1998) SplitsTree: a program for analyzing and visualizing evolutionary data. Bioinformatics 14: 68–73.PubMedGoogle Scholar
  38. Hutchinson J. (1920)Bocconia andMacleaya. Kew Bull. 1920: 275–282.Google Scholar
  39. Jin L., Nei M. (1990) Limitations of the evolutionary parsimony method of phylogenetic analysis. Mol. Biol. Evol. 7: 82–102.PubMedGoogle Scholar
  40. Kadereit J. W. (1993) Papaveraceae. In: Kubitzki K. (ed.) The families and genera of vascular plants, vol. 2. Springer, Heidelberg, pp. 494–506.Google Scholar
  41. Kadereit J. W., Blattner F. R., Jork K. B., Schwarzbach A. (1994) Phylogenetic analysis of the Papaveraceae s.1. (incl. Fumariaceae, Hypecoaceae, andPteridophyllum) based on morphological characters. Bot. Jahrb. Syst. 116: 361–390.Google Scholar
  42. Kadereit J. W., Blattner F. R., Jork K. B., Schwarzbach A. (1995) The phylogeny of Papaveraceae sensu lato: morphological, geographical and ecological implications. Plant Syst. Evol., Suppl. 9: 133–145.Google Scholar
  43. Karrer A. B. (1991) Blütenentwicklung und systematische Stellung der Papaveraceae und Capparaceae. Ph.D. Thesis, University of Zürich.Google Scholar
  44. Kimura M. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111–120.PubMedGoogle Scholar
  45. Kishino H., Hasegawa M. (1989) Evaluation of the maximum likelihood estimate of evolutionary tree topologies from DNA sequence data, and the branching order in Hominidea. J. Mol. Evol. 29: 170–179.PubMedGoogle Scholar
  46. Kluge A. G., Farris J. S. (1969) Quantitative phyletics and the evolution of the anurans. Syst. Zool. 18: 1–32.Google Scholar
  47. Knox E., Downie S. R., Palmer J. D. (1993) Chloroplast DNA rearrangements and the evolution of giant lobelias from herbaceaous ancestors. Mol. Biol. Evol. 10: 414–430.Google Scholar
  48. Lehmann N. L., Sattler R. (1993) Homeosis in floral development ofSanguinaria canadensis andS. canadensis “Multiplex” (Papaveraceae). Amer. J. Bot. 80: 1323–1335.Google Scholar
  49. Liston A., Robinson W. A., Oliphant J. M. (1996) Length variation in the nuclear ribosomal DNA internal transcribed spacer region of non-flowering plants. Syst. Bot. 21: 109–120.Google Scholar
  50. Liu J.-S., Schardl C. L. (1994) A conserved sequence in internal transcribed spacer 1 of plant nuclear rRNA genes. Plant Mol. Biol. 26: 775–778.PubMedGoogle Scholar
  51. Loconte H., Campbell L. M., Stevenson D. W. (1995) Ordinal and familial relationships of ranunculid genera. Plant Syst. Evol., Suppl. 9: 99–118.Google Scholar
  52. Maddison W. P., Maddison D. R. (1992) MacClade: interactive analysis of phylogeny and character evolution, version 3.05. Sinauer, Sunderland.Google Scholar
  53. Mai J. C., Coleman A. W. (1997) The internal transcribed spacer 2 exhibits a common secondary structure in green algae and flowering plants. J. Mol. Evol. 44: 258–271.PubMedGoogle Scholar
  54. Musters W., Boon K., van der Sande C. A. F. M., van Heerikhuizan H., Planta R. J. (1990) Functional analysis of transcribed spacers of yeast ribosomal DNA. EMBO J. 9: 3989–3996.PubMedGoogle Scholar
  55. Proctor M., Yeo P., Lack A. (1996) The natural history of pollination. Timber Press, Portland.Google Scholar
  56. Rachele L. D. (1974) The pollen morphology of the Papaveraceae of the northeastern United States and Canada. Bull. Torrey Bot. Club 101: 152–159.Google Scholar
  57. Ramstad E. (1953) Über das Vorkommen und die Verbreitung von Chelidonsäure in einigen Pflanzenfamilien. Pharm. Acta Helvet. 28: 45–57.PubMedGoogle Scholar
  58. Ritland C. E., Ritland K., Straus N. A. (1993) Variation in the ribosomal transcribed spacers (ITS1 and ITS2) among eight taxa of theMimulus guttatus species complex. Mol. Biol. Evol. 10: 1273–1288.PubMedGoogle Scholar
  59. Roelofs D., van Velzen J., Kuperus P., Bachmann K. (1997) Molecular evidence for an extinct parent of the tetraploid speciesMicroseris acuminata andM. campestris (Asteraceae: Lactuceae). Mol. Ecol. 6: 641–649.PubMedGoogle Scholar
  60. Saitou N., Nei M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. J. Mol. Evol. 4: 406–425.Google Scholar
  61. Sang T., Crawford D. J., Kim S.-C., Stuessy T. F. (1994) Radiation of the endemic genusDendroseris (Asteraceae) on the Juan Fernandez Islands: evidence from sequences of the ITS regions of nuclear ribosomal DNA. Amer. J. Bot. 81: 1494–1501.Google Scholar
  62. Sang T., Crawford D. J., Stuessy T. F. (1995) Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: implications for biogeography and concerted evolution. Proc. Natl. Acad. Sci. USA. 92: 6813–6817.PubMedGoogle Scholar
  63. Savonová I. N. (1994) The karyotypical analysis of the generaDicranostigma, Hylomecon, Macleaya, Sanguinaria, Stylophorum (Chelidonioideae, Papaveraceae). Bot. Žurn. 79: 70–76.Google Scholar
  64. Slavík J., Hanuš V., Slavíková L. (1991) Alkaloids fromStylophorum lasiocarpum (Oliv.) Fedde. Collect. Czech. Chem. Commun. 56: 1116–1122.Google Scholar
  65. Suh Y., Thien L. B., Reeve H. E., Zimmer E. A. (1993) Molecular evolution and phylogenetic implications of internal transcribed spacer sequences of ribosomal DNA in Winteraceae. Amer. J. Bot. 80: 1042–1055.Google Scholar
  66. Swofford D. L. (1993) PAUP: Phylogenetic Analysis Using Parsimony, version 3.1.1. Illinois Natural History Survey, Champaign.Google Scholar
  67. Tatusov R. L., Koonin E. V., Lipman D. J. (1997) A genomic perspective on protein families. Science 278: 631–637.PubMedGoogle Scholar
  68. Thompson J. D., Higgins D. G., Gibson T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22: 4673–4680.PubMedGoogle Scholar
  69. Van der Sande C. A. F. M., Kwa M., van Nues R. W., van Heerikhuizan H., Raué H. A., Planta R. J. (1992) Functional analysis of internal transcibed spacer 2 ofSaccharomyces cerevisiae ribosomal DNA. J. Mol. Evol. 223: 899–910.Google Scholar
  70. Van Houten W. J. H., Scarlett N., Bachmann K. (1993) Nuclear DNA markers of the Australian tetraploidMicroseris scapigera and its North American diploid relatives. Theor. Appl. Genet. 87: 498–505.Google Scholar
  71. Van Nues R. W., Rientjes J. M. J., van der Sande C. A. F. M., Zerp S. F., Sluiter C., Venema J., Planta R. J., Raué H. A. (1994) Separate structural elements within internal trancribed spacer 1 ofSaccharomyces cerevisiae precursor ribosomal RNA direct the formation of 17S and 26S rRNA. Nucl. Acids Res. 22: 912–919.PubMedGoogle Scholar
  72. Van Nues R. W., Rientjes J. M. J., Morré S. A., Mollee E., Planta R. J., Venema J., Raué H. A. (1995) Evolutionarily conserved structural elements are critical for processing of internal trancribed spacer 2 fromSaccharomyces cerevisiae precursor ribosomal RNA. J. Mol. Biol. 250: 24–36.PubMedGoogle Scholar
  73. Vent W. (1973) Beiträge zur Kenntnis der Sippenstruktur der GattungenBocconia L. undMacleaya R.Br. (Papaveraceae). Acta Bot. Acad. Scient. Hungar. 19: 385–391.Google Scholar
  74. Wendel J. F., Schnabel A., Seelanan T. (1995a) Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc. Natl. Acad. Sci. USA 92: 280–284.PubMedGoogle Scholar
  75. Wendel J. F., Schnabel A., Seelanan T. (1995b) An unusual ribosomal DNA sequence fromGossypium gossypioides reveals ancient, cryptic, intergenomic introgression. Mol. Phyl. Evol. 4: 298–313.Google Scholar
  76. White T. J., Bruns T., Lee S., Taylor J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M., Gelfand D., Sninsky J., White T. (eds.) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp. 315–322.Google Scholar
  77. Wolfe A. D., Elisens W. J. (1995) Evidence of chloroplast capture and pollen-mediated gene flow inPenstemon sect.Peltanthera (Scrophulariaceae). Syst. Bot. 20: 395–412.Google Scholar
  78. Ying T.-S., Zhang Y.-L., Boufford D. E. (1993) The endemic genera of seed plants of China. Science Press, Beijing.Google Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • Frank R. Blattner
    • 1
  • Joachim W. Kadereit
    • 2
  1. 1.Department of TaxonomyInstitute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
  2. 2.Institut für Spezielle BotanikJohannes Gutenberg-Universität MainzMainzGermany

Personalised recommendations