Advertisement

Plant Systematics and Evolution

, Volume 219, Issue 3–4, pp 165–179 | Cite as

Polyploid speciation inHedera (Araliaceae): Phylogenetic and biogeographic insights based on chromosome counts and ITS sequences

  • Pablo Vargas
  • Hugh A. McAllister
  • Cynthia Morton
  • Stephen L. Jury
  • Mike J. Wilkinson
Article

Abstract

Variation in chromosome number and internal transcribed sequences (ITS) of nrDNA is used to infer phylogenetic relationships of a wide range ofHedera species. Polyploidy was found to be frequent inHedera, with diploid, tetraploid, hexaploid and octoploid populations being detected. Nucleotide additivity occurs in the ITS sequences of one tetraploid (H. hibernica) and two hexaploid species (H. maderensis, H. pastuchovii), suggesting that all three species originated by allopolyploidisation. ITS sequence polymorphism and nucleotide characters may indicate the presence of an ancient genome persistent only in some allopolyploid species. Phylogenetic analyses of ITS sequence data reveal two lineages ofHedera: one containing all sequences belonging to extant diploids plus the tetraploidH. algeriensis, and a second that includes this ancient ITS type and others exclusive to several polyploid species. The origin of the polyploids is evaluated on the basis of morphology, chromosome counts, ITS sequence polymorphism, and phylogenetic analyses. Reconstruction of reticulate evolution inHedera agrees with two allopolyploid areas on both sides of the Mediterranean basin. Morphological, molecular and cytological evidence also suggests an active dispersal ofHedera populations that may account for three independent introductions in Macaronesia.

Key words

Araliaceae Hedera Chromosome counts polyploidy ITS sequences polymorphism concerted evolution phylogenetic analyses biogeography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ainouche M. L., Bayer R. J. (1997) On the origins of the tetraploidBromus species (sectionBromus, Poaceae): insights from internal transcribed spacer sequences of nuclear ribosomal DNA. Genome 40: 730–743.PubMedGoogle Scholar
  2. Baldwin B. G. (1993) Molecular phylogenetics ofCalycadenia (Compositae) based on ITS sequences of nuclear ribosomal DNA: chromosomal and morphological evolution reexamined. Am. J. Bot. 80: 222–238.Google Scholar
  3. Baldwin B. G., Sanderson M. J., Porter J. M., Wojciechowski M. F., Campbell C. S., Donoghue M. J. (1995) The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann. Bot. Gard. 82: 247–277.Google Scholar
  4. Böhle U. R., Hilger H. H., Martin, W. F. (1996) Island colonization and evolution of insular woody habitat inEchium L. (Boraginaceae). Proc. Natl. Acad. Sci. USA 93: 11740–11745.PubMedGoogle Scholar
  5. Buckler E. S., Ippolito A., Holtsford T. P. (1997) The evolution of ribosomal DNA: divergent paralogues and phylogenetic implications. Genetics 145: 821–832.PubMedGoogle Scholar
  6. Campbell C. S., Wojciechowski M. F., Baldwin B. G., Alice L. A., Donoghue M. J. (1997) Persistent nuclear ribosomal DNA sequence polymorphism in theAmelanchier agamic complex (Rosaceae). Mol. Biol. Evol. 14: 81–90.PubMedGoogle Scholar
  7. Doyle J. J., Doyle J. L. (1987) A rapid DNA isolation procedure for small quantities of fresh tissue. Phytochem. Bull. Soc. Amer. 19: 11–15.Google Scholar
  8. Dyer A. F. (1963) The use of lacto-propionic orcein in rapid squash methods for chromosome preparations. Stain Technol. 38: 85–90.Google Scholar
  9. Favarger C. (1984) Cytogeography and Biosystematics. In: Grant W. F. (ed.) Plant Biosystematics. Academic Press, Montreal, pp. 453–476.Google Scholar
  10. Felsenstein J. (1985) Confidence limits on phylogenies with a molecular clock. Syst. Zool. 34: 154–161.Google Scholar
  11. Fitch W. M. (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20: 406–416.Google Scholar
  12. Francisco-Ortega J., Jansen R. K., Santos-Guerra A. (1996) Chloroplast DNA evidence of colonization, adaptative radiation, and hybridization in the evolution of Macaronesian flora. Proc. Natl. Acad. Sci. USA. 93: 4085–4090.PubMedGoogle Scholar
  13. Fuertes-Aguilar J., Ray M. F., Francisco-Ortega J., Jansen R. K. (1996) Systematics and evolution of the Macaronesian endemic Malvaceae based on morphological and molecular evidence. Abstract in the II Symposium of fauna and flora of the Atlantic islands, Las Palmas de Gran Canaria, February 1996.Google Scholar
  14. Gill B. S., Bir S. S., Singhal V. K. (1984) Cytological studies in some western Himalayan wood species II. Polypetalae. In: Palwal G. S. (ed.) The vegetational wealth of the Himalayas. Puja Publishers, Delhi, pp. 497–515.Google Scholar
  15. Goldblatt P. (1981) Index to plant chromosome numbers 1975–1978. Monographs Syst. Bot. 5.Google Scholar
  16. Grant V. (1981) Plant speciation. 2nd edn. New York: Columbia University Press.Google Scholar
  17. Jacobsen P. (1954) Chromosome numbers in the genusHedera L. Hereditas 40: 252–254.Google Scholar
  18. Kim S. D., Crawford D. J., Francisco-Ortega J., Santos-Guerra A. (1996) A common origin for woodySonchus and five related genera in the Macaronesian islands: Molecular evidence for extensive radiation. Proc. Natl. Acad. Sci. USA 93: 7743–7748.PubMedGoogle Scholar
  19. Lawrence G. H. M., Schultze A. E. (1942) The cultivated Hederas. Gentes Herb. 6: 106–173.Google Scholar
  20. Loockerman D. J., Jansen R. K. (1996) The use of herbarium material for DNA studies. In: Stuessy T. F., Sohmer S. H. (eds.) Sampling the green world. Columbia University Press, New York, pp. 205–220.Google Scholar
  21. Mabberley D. J. (1997) The Plant book. Cambridge University Press, Cambridge.Google Scholar
  22. Masterson J. (1994) Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264: 421–424.Google Scholar
  23. McAllister H. A. (1981) New work on ivies. Int. Dendr. Soc. Year Book 1981: 106–109.Google Scholar
  24. McAllister H. A. (1988) Canary and Algerian ivies. The Plantsman 10: 27–29.Google Scholar
  25. McAllister H. A., Rutherford A. (1990)Hedera helix L. andH. hibernica (Kirchner) Bean (Araliaceae) in British Isles. Watsonia 18: 7–15.Google Scholar
  26. McDade L. A. (1990) Hybrids and phylogenetic systematics I. Patterns of character expression in hybrids and their implications for cladistic analysis. Evolution 44: 1685–1700.Google Scholar
  27. McDade L. A. (1992) Hybrids and phylogenetic systematics II. The impact of hybrids on cladistic analysis. Evolution 46: 1329–1346.Google Scholar
  28. McDade L. A. (1997) Hybrids and phylogenetic systematics III. Comparison with distance methods. Syst. Bot. 22: 669–683.Google Scholar
  29. Piccone A. (1886) Alcune piante Liguri disseminate da Uccelli carpofagi. Nuov. Giorn. Bot. Ital. 28: 286.Google Scholar
  30. Plunkett G. M., Soltis D. E., Soltis P. S. (1997) Clarification of the relationship between Apiaceae and Araliaceae based onmatK andrbcL sequence data. Am. J. Bot. 84: 565–580.Google Scholar
  31. Ray M. F. (1995) Systematics ofLavatera andMalva (Malvaceae, Malveae) a new perspective. Plant Syst. Evol. 198: 29–53.Google Scholar
  32. Ridley H. N. (1930) The dispersal of plants throughout the world. L. Reeve & Co, Kent.Google Scholar
  33. Rose P. Q. (1997) The gardener's guide to growing ivies. David and Charles, London.Google Scholar
  34. Rutherford A., McAllister H. A., Mill R. R. (1993) New ivies from the Mediterranean area and Macaronesia. The Plantsman 15: 115–128.Google Scholar
  35. Sang T., Crawford D., Stuessy T. F. (1995) Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: Implications for biogeography and concerted evolution. Proc. Natl. Acad. Sci. USA 92: 6813–6817.PubMedGoogle Scholar
  36. Seemann B. (1868) Revision of the natural order Hederaceae. Reeve & Co, London.Google Scholar
  37. Singhal V. K., Gill B. S., Bir S. S. (1980) In: Löve A. (ed.) IOPB chromosome number reports LXIX. Taxon 29: 712–713.Google Scholar
  38. Soltis P. S., Doyle J. J., Soltis D. E. (1991) Molecular data and Polyploid Evolution in Plants. In: Soltis P. S., Soltis D. E., Doyle J. J. (eds.) Molecular Systematics of Plants. Chapman and Hall, New York, pp. 177–201.Google Scholar
  39. Stebbins G. L. (1971) Chromosomal Evolution in Higher Plants. Edward Arnold, London.Google Scholar
  40. Suh Y., Thien L. B., Reeve H. E., Zimmer E. A. (1993) Molecular evolution and phylogenetic implications of internal transcribed spacer sequences of ribosomal DNA in Winteraceae. Am. J. Bot. 80: 1042–1055.Google Scholar
  41. Sun B. Y., Kim C. M., Soh W. Y. (1988) Chromosome numbers of Araliaceae in Korea. Korea J. Pl. Taxon. 18: 291–296.Google Scholar
  42. Sun Y., Skinner D. Z., Liang G. H., Hulbert S. H. (1994) Phylogenetic analysis ofSorghum and related taxa using internal transcribed spacers of nuclear ribosomal DNA. Theor. Appl. Genet. 89: 26–32.Google Scholar
  43. Swofford D. L. (1993) PAUP: Phylogenetic analysis using parsimony, version 3.1.1. Illinois Natural History Survey, Champaign.Google Scholar
  44. Tobler F. (1912) Die GattungHedera. Gustav Fischer, Jena.Google Scholar
  45. Vargas P., Baldwin B., Constance L. (1998) Nuclear ribosomal DNA evidence for a western North American origin of Hawaiian and South American species ofSanicula (Apiaceae). Proc. Natl. Acad. Sci. USA. 95: 235–240.PubMedGoogle Scholar
  46. Vargas P., Morton C., Jury S. L. (1999) Biogeographic patterns in Mediterranean and Macaronesian species ofSaxifraga (Saxifragaceae) inferred from phylogenetic analysis using ITS sequences. Am. J. Bot. 86: 724–734.PubMedGoogle Scholar
  47. Voss A. (1896) Vilmorin's Blumengärtnerei, vol. 2. Verlagsbuchhandung Paul Parey, Berlin.Google Scholar
  48. Wanscher J. H. (1933) Studies on the chromosome numbers of the Umbelliferae. Bot. Tidsskrift Cop. 42: 384.Google Scholar
  49. Wendel J. F., Schnabel A., Seelanan T. (1995) Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc. Natl. Acad. Sci. USA. 92: 280–284.PubMedGoogle Scholar
  50. White T. J., Bruns T., Lee S., Taylor J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M., Geldfand D., Sninsky J., White T. (eds.) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp. 315–322.Google Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • Pablo Vargas
    • 1
  • Hugh A. McAllister
    • 2
  • Cynthia Morton
    • 1
  • Stephen L. Jury
    • 1
  • Mike J. Wilkinson
    • 1
  1. 1.Department of Botany, Plant Sciences LaboratoriesUniversity of ReadingUnited Kingdom
  2. 2.University of Liverpool Botanic GardenNess, Neston, CheshireUnited Kingdom

Personalised recommendations