Advertisement

Plant Systematics and Evolution

, Volume 225, Issue 1–4, pp 185–199 | Cite as

A search for the phylogenetic position of the seven-son flower (Heptacodium, Dipsacales): Combining molecular and morphological evidence

  • N. Pyck
  • E. Smets
Article

Abstract

A first report on the problematic phylogenetic position ofHeptacodium (2 spp.; China) using molecular data from chloroplast DNA is presented. Amplification of ORF2280 homolog region was executed in a number of representative taxa in order to determine ifHeptacodium shows similar structural rearrangements as other Dipsacales. DNA sequences ofndhF were generated to clarify the phylogenetic position ofHeptacodium among Caprifoliaceae (s.l.). Six outgroup taxa and fifteen representatives of Dipsacales were sampled and more than 2100 basepairs ofndhF sequence were used in a cladistic analysis. Parsimony analysis produced two shortest trees and showedHeptacodium as sister to all members of Caprifoliaceae (s.str.), although weakly supported. Additionally, trees were constructed withndhF data supplemented with availablerbcL sequences and a morphological data set. Results of all analyses support an unresolved basal position forHeptacodium among Caprifoliaceae (s.l.), which in part explains the difficulty experienced previously in classifying the genus.

Key words

Cladistic analyses Dipsacales Heptacodium morphology ndhphylogeny rbc

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Airy Shaw H. K. (1952) A second species of the genusHeptacodium Rehd. (Caprifoliaceae). Kew Bull. 7: 245–246.Google Scholar
  2. Angiosperm Phylogeny Group (1998) An ordinal classification for the families of flowering plants. Ann. Missouri. Bot. Gard. 85: 531–553.Google Scholar
  3. Backlund A., Donoghue M. J. (1996) Morphology and phylogeny of the order Dipsacales. In: Backlund A. (ed.) Phylogeny of the Dipsacales. Publ. PhD Thesis, Uppsala University, pp. 1–55.Google Scholar
  4. Backlund A., Bremer B. (1997) Phylogeny of the Asteridae s.s. based onrbcL sequences, with particular reference to the Dipsacales. Plant Syst. Evol. 207: 225–255.Google Scholar
  5. Backlund A., Pyck N. (1998) Diervillaceae and Linnaeaceae, two new families of caprifolioids. Taxon 47: 657–661.Google Scholar
  6. Bremer K. (1994) Branch support and tree stability. Cladistics 10: 295–304.Google Scholar
  7. Brummitt R. K. (1992) Vascular plant families and genera. Royal Botanic Gardens, Kew.Google Scholar
  8. Chase M. W., Hills H. H. (1991) Silica gel: an ideal material for field preservation of leaf samples for DNA studies. Taxon 40: 215–220.Google Scholar
  9. Coombes A. J. (1990)Heptacodium jasminoides the Chinese seven-son flower in Britain. Kew Mag. 7: 133–138.Google Scholar
  10. Donoghue M. J. (1983) The phylogenetic relationships ofViburnum. In: Platnick N. I., Funk V. A. (eds.) Advances in cladistics II. Columbia University Press, New York, pp. 143–166.Google Scholar
  11. Downie S. R., Palmer J. D. (1992a) Restriction site mapping of the chloroplast DNA inverted repeat: a molecular phylogeny of the Asteridae. Ann. Missouri. Bot. Gard. 79: 266–283.Google Scholar
  12. Downie S. R., Palmer J. D. (1992b) Use of chloroplast DNA rearrangements in reconstructing plant phylogeny. In: Soltis P. S., Soltis D. E., Doyle J. J. (eds.) Molecular systematics of plants. Chapman & Hall, New York, pp. 14–35.Google Scholar
  13. Downie S. R., Katz-Downie D. S., Wolfe K. H., Calie P. J., Palmer J. D. (1994) Structure and evolution of the largest chloroplast gene (ORF2280): internal plasticity and multiple gene loss during angiosperm evolution. Curr. Genet. 25: 367–378.Google Scholar
  14. Downie S. R., Katz-Downie D. S., Cho K. J. (1997) Relationships in the Caryophyllales as suggested by phylogenetic analyses of partial chloroplast DNA ORF2280 homolog sequences. Amer. J. Bot. 84: 253–273.Google Scholar
  15. Doyle J. J., Doyle J. L. (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11–15.Google Scholar
  16. Felsenstein J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.Google Scholar
  17. Fukuoka N. (1972) Taxonomic study of the Caprifoliaceae. Mem. Fac. Sci. Kyoto Univ. Ser. Biol. 6: 15–58.Google Scholar
  18. Hara H. (1983) A revision of Caprifoliaceae of Japan with reference to allied plants in other districts and the Adoxaceae. Ginkgoana 5: 1–336.Google Scholar
  19. Holmgren P. K., Holmgren N. H., Barnett L. C. (1990) Index Herbariorum Part I: The herbaria of the world, ed. 8. New York Botanical Garden.Google Scholar
  20. Hsu P. S. (1983) A preliminary numerical taxonomy of the family Caprifoliaceae. Acta Phytotaxon. Sin. 21: 26–32.Google Scholar
  21. Judd W. S., Sanders R. W., Donoghue M. J. (1994) Angiosperm family pairs: preliminary phylogenetic analyses. Harvard Pap. Bot. 5: 1–51.Google Scholar
  22. Kaltenboeck B., Spatafora J. W., Zhang X., Kousoulas K. G., Blackwell M., Storz J. (1992) Efficient production of single-stranded DNA as long as 2 kb for sequencing of PCR-amplified DNA. Biotechniques 12: 164–170.Google Scholar
  23. Koller G. L. (1986) Seven-son flower from Zhejiang: introducing the versatile ornamental shrubHeptacodium jasminoides. Arnoldia 46: 3–13.Google Scholar
  24. Levinson G., Gutman G. A. (1987) Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol. Biol. Evol. 4: 203–221.Google Scholar
  25. Mabberley D. J. (1997) The plant book, a portable dictionary of the higher plants. Cambridge University Press.Google Scholar
  26. Metcalfe C. R. (1952) Notes on the anatomy ofHeptacodium. Kew Bull. 7: 247–248.Google Scholar
  27. Olmstead R. G., Sweere J. A. (1994) Combining data in phylogenetic systematics: an empiral approach using three molecular data sets in the Solanaceae. Syst. Biol. 43: 467–481.Google Scholar
  28. Olmstead R. G., Reeves P. A. (1995) Evidence for the polyphyly of the Scrophulariaceae based on chloroplastrbcL andndhF sequences. Ann. Missouri Bot. Gard. 82: 176–193.Google Scholar
  29. Olmstead R. G., Jansen R. K., Kim K. J., Wagstaff S. J. (2000) The phylogeny of the Asteridae s.l. based on chloroplastndhF sequences. Mol. Phyl. Evol. 16: 96–112.Google Scholar
  30. Pyck N., Roels P., Smets E. (1999) Tribal relationships in Caprifoliaceae: evidence from a cladistic analysis usingndhF sequences. Syst. Geogr. Pl. 69: 145–159.Google Scholar
  31. Rehder A. (1916) Caprifoliaceae. In: Sargent Ch. (ed.) S. Plantae Wilsonianae 2, pp. 617–619.Google Scholar
  32. Roels P. (1998) Localisation of three insertions in ORF2280 of the chloroplast genome of Dipsacales — Systematic implications. In: Roels P. (ed.) Phylogenetic position and delimitation of the order Dipsacales — A multidisciplinary approach. Unpubl. PhD Thesis, K.U.Leuven, pp. 129–148.Google Scholar
  33. Scotland R. W., Sweere V., Reeves P. A., Olmstead R. G. (1995) Higher-level systematics of Acanthaceae determined by chloroplast DNA sequences. Amer. J. Bot. 82: 266–275.Google Scholar
  34. Shinozaki K., Ohme M., Tanaka M., Wakasugi T., Hayashida N., Matsubayashi T., Zaita N., Chunwongse J., Obokata J., Yamaguchi-Shinozaki K., Ohto C., Torazawa K., Meng B-Y., Sugita M., Deno H., Kamogashira T., Yamadak K., Kusuda J., Takaiwa F., Kato A., Tohdoh N., Shimada H., Sugiura M. (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO 5: 2043–2049.Google Scholar
  35. Soltis D. E., Soltis P. S., Mort M. E., Chase M. W., Savolainen V., Hoot S. B., Morton C. M. (1998) Inferring complex phylogenies using parsimony: an empirical approach using three large DNA data sets for angiosperms. Syst. Biol. 47: 32–42.Google Scholar
  36. Spangler R. E., Olmstead R. G. (1999) Phylogenetic analysis of Bignoniaceae based on the cpDNA gene sequencesrbcL andndhF. Ann. Missouri Bot. Gard. 86: 33–46.Google Scholar
  37. Sugiura M. (1989) The chloroplast chromosomes in land plants. Ann. Rev. Cell. Biol. 5: 51–70.Google Scholar
  38. Sugiura M. (1992) The chloroplast genome. Plant Mol. Biol. 19: 149–168.Google Scholar
  39. Swofford D. L. (2000) PAUP*. Phylogenetic analysis using parsimony (* and other methods), Version 4.0b4a. Sinauer Associates, Sunderland Massachusetts.Google Scholar
  40. Tang Y. C., Li L. Q. (1994) The phytogeography of Caprifoliaceae s. str. with its implications for understanding eastern asiatic flora. Acta Phytotaxon. Sin. 32: 197–218.Google Scholar
  41. Troll W., Weberling F. (1966) Die Infloreszenzen der Caprifoliaceen und ihre systematische Bedeutung. Abh. Akad. Wiss. Lit. Mainz, math.-naturw. Kl. 4: 455–605.Google Scholar
  42. Walter K. S., Gillett H. J. (1998) 1997 IUCN Red list of threatened plants. Compiled by the World Conservation Monitoring Centre. IUCN — The World Conservation Union, Gland, Switzerland and Cambridge, UK.Google Scholar
  43. Weberling F. (1966) Zur systematischen Stellung der GattungHeptacodium Rehd. Bot. Jahrb. 85: 253–258.Google Scholar

Copyright information

© Springer-Verlag 2000

Authors and Affiliations

  • N. Pyck
    • 1
  • E. Smets
    • 1
  1. 1.Laboratory of Plant Systematics, Institute of Botany and MicrobiologyKatholieke Universiteit LeuvenLeuvenBelgium

Personalised recommendations