Plant Systematics and Evolution

, Volume 220, Issue 1–2, pp 21–36 | Cite as

The phylogenetic position of the endemic flat-needle pinePinus krempfii (Pinaceae) from Vietnam, based on PCR-RFLP analysis of chloroplast DNA

  • Xiao-Ru Wang
  • Alfred E. Szmidt
  • Hoang Nghia Nguyên


Pinus krempfii is morphologically very unique as compared to otherPinus species by having flat leaf-like needles. Its taxonomic position has been problematic ever since its discovery. In this study, an attempt was made to infer the taxonomic status ofP. krempfii through restriction fragment length polymorphism analysis of 12 PCR amplified chloroplast (cp) DNA regions. Phylogenetic analysis was conducted using 10 representatives of the twoPinus subgenera:Strobus andPinus. In addition, to infer the position ofP. krempfii in Pinaceae in relation with other genera, 14 representatives of eight additional genera were included in the analysis. Our cpDNA-based results indicate that: 1)P. krempfii clearly belongs to the genusPinus. This result does not favour the creation of a new genusDucampopinus in Pinaceae for this taxon. 2) Within the genusPinus, P. krempfii is more allied with species in subgenusStrobus and differs distinctly from species in subgenusPinus. 3) Despite the similarity in certain morphological and anatomical leaf and wood characters toKeteleeria andPseudolarix, the cpDNA data do not support the hypothesis for close relationship betweenP. krempfii and these two genera.

Key words

Gymnosperm Pinaceae Pinus P. krempfii cpDNA PCR-RFLP phylogeny 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anonymus (1996a) Red Data Book of Vietnam. Vol. 2: Plants. Ministry of Science, Technology and Environment. Science and Technics Publishing House, Hanoi (in Vietnamese).Google Scholar
  2. Anonymus (1996b) Vietnam Forest Trees. Forest Inventory and Planning Institute. Agricultural Publishing House, Hanoi.Google Scholar
  3. Bremer K. (1988) The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42: 795–803.Google Scholar
  4. Bremer B. (1991) Restriction data chloroplast DNA for phylogenetic reconstruction: is there only one accurate way of scoring? Plant Syst. Evol. 175: 39–54.Google Scholar
  5. Brunsfeld S. J., Soltis P. S., Soltis D. E., Gadek P. A., Quinn C. J., Strenge D. D., Ranker T. A. (1994) Phylogenetic relationships among the genera of Taxodiaceae and Cupressaceae: evidence fromrbcL sequences. Systematic Botany 19: 253–262.Google Scholar
  6. Buchholz J. T. (1951) A flat-leaved pine from Annam, Indo-China. American Journal of Botany 38: 245–252.Google Scholar
  7. Chase M. W. et al. (1993) Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid generbcL. Annals of the Missouri Botanical Garden 80: 528–580.Google Scholar
  8. Chevalier A. (1944) Notes sur les conifères de l'Indochine. Revue de Botanique Appliquée et d'Agriculture Tropicale 24: 7–34.Google Scholar
  9. Critchfield W. B., Little E. L. Jr. (1966) Geographic distribution of the pines of the world. USDA Forest Service Miscellaneous Publication 991.Google Scholar
  10. De Ferré Y. (1948) Quelques particularités anatomiques d'un pin indochinois:Pinus Krempfii. Bulletin de la Société d'Histoire Naturelle de Toulouse 83: 1–6.Google Scholar
  11. De Ferré Y. (1953) Division du genrePinus en quatre sous-genres. Academie des Sciences Compte Rendu 236: 226–228.Google Scholar
  12. Donoghue M. J., Olmstead R. G., Smith J. F., Palmer J. D. (1992) Phylogenetic relationships of Dipsacales based onrbcL sequences. Annals of the Missouri Botanical Garden 79: 333–345.Google Scholar
  13. Dowling T. E., Moritz C., Palmer J. D., Rieseberg L. H. (1996) Nucleic acids III: analysis of fragments and restriction sites. In: Hillis D. M., Moritz C., Mable B. K. (eds.) Molecular Syatematics, 2 edn. Sunderland, Sinauer Associates, pp. 249–320.Google Scholar
  14. Eckenwalder J. E. (1976) Re-evaluation of Cupressaceae and Taxodiaceae: a proposed merger. Madroño 23: 237–256.Google Scholar
  15. Erdtman H., Kimland B., Norin T. (1966) Wood constituents ofDucampopinus krempfii (Lecomte) Chevalier (Pinus Krempfii Lecomte). Phytochemistry 5: 927–931.Google Scholar
  16. Farjon A. (1984) Pines. Drawings and descriptions of the genusPinus. E. J. Brill/DR. W. Backhuys, Leiden.Google Scholar
  17. Farjon A. (1990) Pinaceae. Drawings and descriptions of the generaAbies, Cedrus, Pseudolarix, Keteleeria, Nothotsuga, Tsuga, Cathay, Pseudotsuga, Larix andPicea. Regnum Vegetabile 121. Koeltz Scientific Books, Königstein.Google Scholar
  18. Farjon A. (1996) Biodiversity ofPinus (Pinaceae) in Mexico: speciation and palaeo-endemism. Botanical Journal of the Linnean Society 121: 365–384.Google Scholar
  19. Farjon A., Styles B. T. (1997)Pinus (Pinaceae). Flora Neotropica Monograph 75. The New York Botanical Garden, New York.Google Scholar
  20. Farris J. S. (1989) The retention index and the rescaled consistency index. Cladistics 5: 417–419.Google Scholar
  21. Felsenstein J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.Google Scholar
  22. Florin R. (1931) Untersuchungen zur Stammesgeschichte der Coniferales und Cordaitales. Erster Teil: Morphologie und Epidermisstruktur der Assimilationsorgane bei den rezenten Koniferen. Kungliga Svenska Vetenskapsakademiens Handlingar Ser. 3. 10: 1–588.Google Scholar
  23. Frankis M. P. (1989) Generic inter-relationships in Pinaceae. Notes of the Royal Botanical Garden of Edinburgh 45: 527–548.Google Scholar
  24. Frankis M. P. (1993) Morphology and affinities ofPinus brutia. In International Symposium onPinus brutia Ten., pp. 11–18. Ministry of Forestry, Ankara.Google Scholar
  25. Gaussen H. (1960) Les gymnospermes actuelles et fossiles. Fassicule VI. Les Conifères. Chap. 11. Généralités, GenrePinus. Travaux du Laboratoire Forestier Toulouse. Tome 2, Sect. 1, Vol. 1, Chap. 11: 1–272.Google Scholar
  26. Govindaraju D., Lewis P., Cullis C. (1992) Phylogenetic analysis of pines using ribosomal DNA restriction fragment length polymorphisms. Plant Syst. Evol. 179: 141–153.Google Scholar
  27. Hart J. A. (1987) A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269–307.Google Scholar
  28. Ickert-Bond S. M. (1997)Pinus krempfii Lec. a Vietnamese conifer with problematic affinities. American Journal of Botany (Suppl.) 84: 203, Abstract 589.Google Scholar
  29. Karalamangala R. R., Nickrent D. L. (1989) An electrophoretic study of representatives of subgenusDiploxylon ofPinus. Canadian Journal of Botany 67: 1750–1759.Google Scholar
  30. Klaus W. (1989) Mediterranean pines and their history. In: Ehrendorfer F. (ed.) Woody Plants — Evolution and Distribution Since the Tertiary. Plant Syst. Evol. (Special Edition) 162: 133–163.Google Scholar
  31. Kluge A. G., Farris J. S. (1969) Quantitative phyletics and the evolution ofAnurans. Systematic Zoology 18: 1–32.Google Scholar
  32. Krupkin A. B., Liston A., Strauss S. H. (1996) Phylogenetic analysis of the hard pines (Pinus subgenusPinus, Pinaceae) from chloroplast DNA restriction site analysis. American Journal of Botany 83: 489–498.Google Scholar
  33. Kwei Y. L., Lee C. L. (1963) Anatomical studies of the leaf structure of Chinese pines. Acta Botanica Sinica 11: 44–66 (in Chinese).Google Scholar
  34. Lavin M., Mathews S., Hughes C. (1991) Chloroplast DNA variation inGliricidia sepium (Leguminosae): intraspecific phylogeny and tokogeny. American Journal of Botany 78: 1576–1585.Google Scholar
  35. Lecomte H. (1921) Un pin remarquable de l'Annam. Bulletin du Museum National d'Histoire Naturelle Paris 27: 191–192.Google Scholar
  36. Lecomte H. (1924) Additions au sujet dePinus krempfii H. Lec. Bulletin du Museum National d'Histoire Naturelle Paris 30: 321–325.Google Scholar
  37. Liston A., Robinson W. A., Piñero D., Alvarez-Buylla E. R. (1999) Phylogenetics ofPinus (Pinaceae) based on unclear ribosomal DNA internal transcribed spacer region sequences. Molecular Phylogenetics and Evolution 11: 95–109.Google Scholar
  38. Little E. L. Jr., Critchfield W. B. (1969) Subdivisions of the genusPinus (pines). USDA Forest Service Miscellaneous Publication 1144.Google Scholar
  39. Millar C. I. (1993) Impact of the Eocene on the Evolution ofPinus. Annals of the Missouri Botanical Garden 80: 471–498.Google Scholar
  40. Miller C. N. Jr. (1976) Early evolution in the Pinaceae. Review of Palaeobotany and Palynology 21: 101–117.Google Scholar
  41. Miller C. N. Jr. (1977) Mesozoic conifers. The Botanical Review 43: 217–280.Google Scholar
  42. Mirov N. T. (1967) The genusPinus. The Ronald Press Company, New York.Google Scholar
  43. Moran G. F., Smith D., Bell J. C., Appels R. (1992) The 5S-RNA genes inPinus radiata and the spacer region as a probe for relationships betweenPinus species. Plant Syst. Evol. 183: 209–221.Google Scholar
  44. Nguyên H. N. (1993) Two-flat-needle pine endemic to Vietnam. Forestry Review 32: 10–11 (in Vietnamese).Google Scholar
  45. Nguyên T. H., Vidal J. E. (1996) Flore du Cambodge du Laos et du Viêtnam. Vol. 28: Gymnospermae. Muséum National d'Histoire Naturelle, Paris. (ISBN 2-85654-202-6).Google Scholar
  46. Parducci L., Szmidt A. E. (1999) PCR-RFLP analysis of cpDNA in the genusAbies. Theoretical and Applied Genetics 98: 802–808.Google Scholar
  47. Pérez De La Rosa J., Harris S. A., Farjon A. (1995) Noncoding chloroplast DNA variation in Mexican pines. Theoretical and Applied Genetics 91: 1101–1106.Google Scholar
  48. Pilger R. (1926)Coniferae. In: Engler A., Prantl K. (eds.) Die Natürlichen Pflanzenfamilien. Vol. 13 (ed.2).Gymnospermae. Wilhelm Engelmann, Leipzig, pp. 121–403.Google Scholar
  49. Piovesan G., Pelosi C., Schirone A., Schirone B. (1993) Taxonomic evaluations of the genusPinus (Pinaceae) based on electrophoretic data of salt soluble and insoluble seed storage proteins. Plant Syst. Evol. 186: 57–68.Google Scholar
  50. Plunkett G. M., Soltis D. E., Soltis P. S. (1997) Clarification of the relationship between Apiaceae and Araliaceae based onmatK andrbcL sequence data. American Journal of Botany 84: 565–580.Google Scholar
  51. Prager E. M., Fowler D. P., Wilson A. C. (1976) Rates of evolution in conifers (Pinaceae). Evolution 30: 637–649.Google Scholar
  52. Price R. A. (1989) The genera of Pinaceae in the southeastern United States. Journal of the Arnold Arboretum 70: 247–305.Google Scholar
  53. Price R. A., Olsen-Stojkovich J., Lowenstein J. M. (1987) Relationships among the genera of Pinaceae: an immunological comparison. Systematic Botany 12: 91–97.Google Scholar
  54. Sandbrink J. M., Van Brederode J. (1991) Different approaches to analysis of restriction fragment patterns of chloroplast DNA and phylogenetic relationships inSilene sectionSiphonomorpha (Caryophyllaceae). Biochemical Systematics and Ecology 19: 559–567.Google Scholar
  55. Shaw G. R. (1914) The genusPinus. Publication of the Arnold Arboretum 5. Riverside Press, Cambridge, MA.Google Scholar
  56. Stefanović S., Jager M., Deutsch J., Broutin J., Masselot M. (1998) Phylogenetic relationships of conifers inferred from partial 28S rRNA gene sequences. American Journal of Botany 85: 688–697.Google Scholar
  57. Strauss S. H., Doerksen A. H. (1990) Restriction fragment analysis of pine phylogeny. Evolution 44: 1081–1096.Google Scholar
  58. Swofford D. L. (1993) PAUP: Phylogenetic analysis using parsimony, version 3.1.1. Computer program distributed by the Illinois Natural History Survey. Champaign, IL.Google Scholar
  59. Szmidt A. E., Lidholm J., Hällgren J.-H. (1986) DNA extraction and preliminary characterization of chloroplast DNA fromPinus sylvestris andPinus contorta. In: Lindgren D. (ed.) Frans Kempe Symposium on Provenances and Forest Tree Breeding for High Latitudes. Swedish University of Agricultural Sciences. (ISBN 91-576-2813-0), pp. 269–280.Google Scholar
  60. Szmidt A. E., Wang X.-R., Changtragoon S. (1996) Contrasting patterns of genetic diversity in two tropical pines:Pinus kesiya Royle ex Gordon andP. merkusii Jungh. et De Vriese. Theoretical and Applied Genetics 92: 436–441.Google Scholar
  61. Taberlet P., Gielly L., Pautou G., Bouvet J. (1991) Universal primers for amplification of three noncoding regions of chloroplast DNA. Plant Molecular Biology 17: 1105–1109.Google Scholar
  62. Tsumura Y., Yoshimura K., Tomaru N., Ohba K. (1995) Molecular phylogeny of conifers using RFLP analysis of PCR-amplified specific chloroplast genes. Theoretical and Applied Genetics 91: 1222–1236.Google Scholar
  63. Van Der Burgh J. (1973) Hölzer der niederrheinischen Braunkohlenformation usw. Nebst einer systematisch-anatomischen Bearbeitung der GattungPinus L. Review of Palaeobotany and Palynology 15: 73–275.Google Scholar
  64. Wakasugi T., Tsudzuki S. I., Shibata M., Sugiura M. (1994) A physical map and clone bank of the black pine (Pinus thunbergii) Chloroplast Genome. Plant Molecular Biology Reporter 12: 227–241.Google Scholar
  65. Wang X.-R. (1992) Genetic diversity and evolution of EurasianPinus species. PhD Thesis, Swedish University of Agricultural Sciences, Faculty of Forestry, Department of Forest Genetics and Plant Physiology. (ISBN 91-576-4641-4).Google Scholar
  66. Wang X.-R., Szmidt A. E. (1993) Chloroplast DNA-based phylogeny of AsianPinus species (Pinaceae). Plant Syst. Evol. 188: 197–211.Google Scholar
  67. Wolfe A. D., Elisens W. J., Watson L. E., Depamphilis W. (1997) Using restriction-site variation of PCR-amplified cpDNA genes for phylogenetic analysis of Tribe Cheloneae (Scrophulariaceae). American Journal of Botany 84: 555–564.Google Scholar
  68. Wolfe A. D., Liston A. (1997) Contribution of PCR-based methods to plant systematics. In: Soltis D. E., Soltis P. S., Doyle J. J. (eds.) Molecular systematics of plants (ed. 2), chap. 2. Chapman and Hall, New York.Google Scholar

Copyright information

© Springer-Verlag 2000

Authors and Affiliations

  • Xiao-Ru Wang
    • 1
  • Alfred E. Szmidt
    • 1
  • Hoang Nghia Nguyên
    • 2
  1. 1.Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
  2. 2.Forest Science Institute of VietnamHanoiVietnam

Personalised recommendations