Plant Systematics and Evolution

, Volume 191, Issue 1–2, pp 27–38

The chloroplast generps 4 as a tool for the study ofPoaceae phylogeny

  • Sophie Nadot
  • Robert Bajon
  • Bernard Lejeune
Article

Abstract

Phylogenetic analyses of 28Poaceae species based on the chloroplastrps 4 gene are presented using parsimony and distance methods. Two monocots from other families were used as outgroups. The chloroplast generps 4 was amplified, cloned, and sequenced for each species. The inferred phylogenetic trees were compared to recent classifications and are shown to fit their general features. There is a dichotomy in our tree between the pooid group and the other grasses. This is in contradiction with other molecular phylogenies, where the bamboos appear first within the family. This result led us to discuss some hypotheses about the relationships of the bambusoids with the other groups of grasses, and also about the relative position of rice and bamboo, which are found close to each other in our trees.

Key words

Poaceae Phylogenetic analyses rps 4 gene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Birnboim, H. C., Doly, J., 1979: A rapid alkaline extraction procedure for screening recombinant plasmid DNA. — Nucleic Acids Res.7: 1513–1523.Google Scholar
  2. Chase, M. W., Soltis, D. E., Olmstead, R. G., Morgan, D., Les, D. H., Mishler, B. D., Duvall, M. R., Price, R. A., Hills, H. G., Qiu, Y.-L., Kron, K. A., Rettig, J. H., Conti, E., Palmer, J. D., Manhart, J. R., Sytsma, K. J., Michaels, H. J., Kress, W. J., Karol, K. G., Clark, W. D., Hedrén, M., Gaut, B. S., Jansen, R. K., Kim, K.-J., Wimpee, C. F., Smith, J. F., Furnier, G. R., Strauss, S. H., Xiang, Q. Y., Plunkett, G. M., Soltis, P. S., Swensen, S., Williams, S. E., Gadek, P. A., Quinn, C. J., Eguiarte, L. E., Goldenberg, E., Learn, G. H. J., Graham, S. W., Barret, S. C. H., Dayanandan, S., Albert, V. A., 1993: DNA sequence phylogenetics of seed plants: an analysis of the plastid generbcL. — Ann. Missouri Bot. Gard.80: 528–586.Google Scholar
  3. Clayton, W. D., Renvoize, S. A., 1986: GeneraGraminum, grasses of the world. — Kew Bull. Ser. XIII. — London: HMSO Publications.Google Scholar
  4. Dahlgren, R. M. T., Clifford, H. T., Yeo, P. F., 1985: The families of the monocotyledons (structure, evolution, and taxonomy). — Berlin: Springer.Google Scholar
  5. Doebley, J., Durbin, M., Golenberg, E. M., Clegg, M. T., Ma, D. P., 1990: Evolutionary analysis of the large subunit of the carboxylase (rbcL) nucleotide sequence among the grasses (Gramineae). — Evolution44: 1097–1108.Google Scholar
  6. —, 1992: Chloroplast DNA variation and the phylogeny ofHordeum (Poaceae). — Amer. J. Bot.79: 576–584.Google Scholar
  7. Downie, S. R., Palmer, J. D., 1992: Use of chloroplast DNA rearrangements in reconstructing phylogeny. — InSoltis, P. S., Soltis, D. E., Doyle, J. J., (Eds): Molecular systematics of plants, pp. 14–35. — New York, London: Chapman & Hall.Google Scholar
  8. Doyle, J. J., Doyle, J. L., 1987: A rapid DNA isolation procedure for small quantities of fresh leaf tissue. — Phytochem. Bull.19: 11–15.Google Scholar
  9. Enomoto, S. I., Ogihara, Y., Tsunewaki, K., 1985: Studies on the origin of crop species by restriction endonuclease analysis of organellar DNA. I. Phylogenetic relationships among ten cereals revealed by the restriction fragment patterns of chloroplast DNA. — Japan J. Genet.60: 411–424.Google Scholar
  10. Felsenstein, J., 1990: PHYLIP: Phylogeny inference package. Version 3.3. — Seattle: University of Washington.Google Scholar
  11. Giannasi, D. E., Zurawski, G., Learn, G., Clegg, M. T., 1992: Evolutionary relationships of theCaryophyllidae based on comparativerbcL sequences. — Syst. Bot.17: 1–15.Google Scholar
  12. Gould, F. W., 1968: Grass systematics. — New York: McGraw-Hill.Google Scholar
  13. Hamby, R. K., Zimmer, E. A., 1992: Ribosomal RNA as a phylogenetic tool. — InSoltis, P. S., Soltis, D. E., Doyle, J. J., (Eds): Molecular systematics of plants, pp. 50–91. — New York, London: Chapman & Hall.Google Scholar
  14. Hennig, W., 1966: Phylogenetic systematics. — Urbana: University of Illinois Press.Google Scholar
  15. Higgins, D. G., Sharp, P. M., 1988: CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. — Gene73: 237–244.Google Scholar
  16. Hilu, K. W., 1987: Chloroplast DNA in the systematics and evolution of thePoaceae. — InSoderstrom, T. R., Hilu, K. W., Campbell, C. S., Barkworth, M. E., (Eds): Grass systematics and evolution, pp. 265–276. — Washington: Smithsonian Institution Press.Google Scholar
  17. —, 1985: Trends of variation and systematics ofPoaceae. — Taxon34: 102–114.Google Scholar
  18. —, 1982: Systematics ofGramineae: a cluster analysis study. — Taxon31: 9–36.Google Scholar
  19. Hiratsuka, J., Shimada, H., Whittier, R., Ishibashi, T., Sakamoto, M., Mori, M., Kondo, C., Honji, Y., Sun, C. R., Meng, B. Y., Li, Y. Q., Kanno, A., Nishizawa, Y., Hirai, A., Shinozaki, K., Sugiura, M., 1989: The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of cereals. — Mol. Gen. Genet.217: 185–194.Google Scholar
  20. Hubbard, C. E., 1984: Grasses, 3rd edn. — London: Penguin Books.Google Scholar
  21. Kellog, E. A., 1992: Tools for studying the chloroplast genome in theTriticeae (Gramineae): anEco RI map, a diagnostic deletion, and support forBromus as an outgroup. — Amer. J. Bot.72: 186–197.Google Scholar
  22. Les, D. H., Garvin, D. K., Wimpee, C. F., 1991: Molecular evolutionary history of ancient aquatic angiosperms. — Proc. Natl. Acad. Sci. USA88: 10119–10123.Google Scholar
  23. MacFarlane, T. D., 1987:Poaceae subfamilyPooideae. — InSoderstrom, T. R., Hilu, K. W., Campbell, C. S., Barkworth, M. E., (Eds): Grass systematics and evolution, pp. 265–276. — Washington: Smithsonian Institution Press.Google Scholar
  24. —, 1982: The classification ofPoaceae subfamilyPooideae. — Taxon31: 178–203.Google Scholar
  25. Maddison, W. P., Maddison, D. R., 1992: MacClade: analysis of phylogeny and character evolution. Version 3.0. — Sunderland, Massachusetts: Sinauer.Google Scholar
  26. Martin, P. G., Dowd, J. M., 1991: A comparison of 18s ribosomal RNA and Rubisco large subunit sequences for studying angiosperm phylogeny. — J. Mol. Evol.33: 274–282.Google Scholar
  27. Palmer, J. D., Zamir, D., 1982: Chloroplast DNA evolution and phylogenetic relationships inLycopersicon. — Proc. Natl. Acad. Sci. USA79: 5006–5010.Google Scholar
  28. —, 1988: Chloroplast DNA variation and plant phylogeny. — Ann. Missouri Bot. Gard.75: 1180–1206.Google Scholar
  29. Philippe, H., 1992: MUST: management utilitarians for sequences and trees. — Orsay: University of Paris-Sud.Google Scholar
  30. Ritland, K., Clegg, M. T., 1987: Evolutionary analysis of plant DNA sequences. — Amer. Naturalist130: S 74-S 100.Google Scholar
  31. Saitou, N., Nei, M., 1987: The Neighbor-joining Method: a new method for reconstructing phylogenetic trees. — Mol. Biol. Evol.4: 406–425.Google Scholar
  32. Shinozaki, K., Ohme, M., Tanaka, M., Wakasugi, T., Hayashida, N., Matsubayashi, T., Zaita, N., Chungwongse, J., Obokata, J., Yamaguchi-Shinozaki, K., Meng, B. Y., Sugita, M., Deno, H., Kamogashira, T., Yamada, K., Kusuda, J., Takaiwa, F., Kato, A., Tohdoh, N., Shimada, H., Sugiura, M., 1986: The complete nucleotide sequence of tobacco chloroplast genome: its gene organization and expression. — EMBO J.5: 2043–2049.Google Scholar
  33. Soltis, D. E., Soltis, P. S., Clegg, M. T., Durbin, M., 1990:rbcL sequence divergence and phylogenetic relationship inSaxifragaceae sensu lato. — Proc. Natl. Acad. Sci. USA87: 4640–4644.Google Scholar
  34. —, —, 1992: Intraspecific chloroplast DNA variation: systematic and phylogenetic implications. — InSoltis, P. S., Soltis, D. E., Doyle, J. J., (Eds): Molecular systematics of plants, pp. 117–150. — New York, London: Chapman & Hall.Google Scholar
  35. Soreng, R. J., Davis, J. I., Doyle, J. J., 1990: A phylogenetic analysis of chloroplast DNA restriction site variation in thePoaceae subfam.Pooideae. — Pl. Syst. Evol.172: 83–97.Google Scholar
  36. Stebbins, G. L., 1956: Cytogenetics and evolution of the grass family. — Amer. J. Bot.43: 890–905.Google Scholar
  37. Subramanian, A. R., Steinmetz, A., Bogorad, L., 1983: Maize chloroplast DNA encodes a protein sequence homologous to the bacterial ribosome assembly protein S4. — Nucleic Acids Res.11: 5277–5287.Google Scholar
  38. Swofford, D. L., 1990: PAUP: phylogenetic analysis using parsimony. Version 3.0. — Champaign, Illinois: Illinois Natural History Survey.Google Scholar
  39. Tahar, S. B., Bottomley, W., Whitfeld, P. R., 1986: Characterization of the spinach chloroplast genes for the S4 ribosomal protein, tRNA-Thr (UGU) and tRNA-Ser (GGA). — Pl. Mol. Biol.7: 63–70.Google Scholar
  40. Tutin, T. G., Heywood, V. H., Burges, N. A., Valentine, D. H., Walters, S. M., Webb, D. A., (Eds), 1980: Flora Europaea5. — Cambridge: Cambridge University Press.Google Scholar
  41. Tzvelev, N. N., 1989: The system of grasses (Poaceae) and their evolution. — The Bot. Rev.55: 141–203.Google Scholar
  42. Watson, L., Clifford, H. T., Dallwitz, M. J., 1985: The classification ofPoaceae: subfamilies and supertribes. — Austral. J. Bot.33: 433–484.Google Scholar
  43. Wilson, M. A., Gaut, B., Clegg, M. T., 1990: Chloroplast DNA evolves slowly in the Palm family (Arecaceae). — Mol. Biol. Evol.7: 303–314.Google Scholar
  44. Wolfe, K. H., Gouy, M., Yang, Y. W., Sharp, P. M., Li, W. H., 1989: Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. — Proc. Natl. Acad. Sci. USA86: 6201–6205.Google Scholar
  45. Wolfe, K. H., Li, W. H., Sharp, P. M., 1987: Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. — Proc. Natl. Acad. Sci. USA84: 9054–9058.Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Sophie Nadot
    • 1
  • Robert Bajon
    • 2
  • Bernard Lejeune
    • 1
  1. 1.Laboratoire de Biologie Moléculaire Végétale associé au CNRS (URA 1128)Université Paris SudOrsay CedexFrance
  2. 2.Laboratoire de Biologie Végétale associé au CNRS (URA 1492)Université Paris SudOrsay CedexFrance

Personalised recommendations