Plant Systematics and Evolution

, Volume 223, Issue 1–2, pp 71–79 | Cite as

Cytological characterization of heterochromatin and rDNA inPinus radiata andP. taeda

  • M. D. Jacobs
  • R. C. Gardner
  • B. G. Murray


Fluorochrome C-banding ofPinus radiata andP. taeda metaphase chromosomes showed many pericentromeric DAPI bands and interstitial CMA bands inP. radiata, and centromeric and interstitial CMA bands inP. taeda. Giemsa C-band patterns differed between the species with centromeric bands inP. radiata but no consistent bands inP. taeda. A karyotype ofP. radiata was developed based on banding patterns that distinguished all but two of the 12 pairs of chromosomes. In situ hybridization (ISH) using probes for high-copy ribosomal DNA (rDNA) showed 10 pairs of 18S–25S sites and two pairs of 5S sites in both species. Most of the sites were interstitial or centromeric.

Key words

Pinus radiata P. taeda Heterochromatin ribosomal RNA chromosome banding in situ hybridization karyotype 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bennett S. T., Leitch I. J., Bennett M. D. (1995) Chromosome identification and mapping in the grassZingeria biebersteiniana (2n = 4) using fluorochromes. Chromosome Res. 3: 101–108.PubMedGoogle Scholar
  2. Borzan Z., Papes D. (1978) Karyotype analysis inPinus: A contribution to the standardization of the karyotype analysis and review of some applied techniques. Silvae Genet. 27: 144–150.Google Scholar
  3. Brandes A., Heslop-Harrison J. S., Kamm S., Doudrick R. L., Schmidt T. (1997) Comparative analysis of the chromosomal and genomic organization ofTy1-copia-like retrotransposons in pteridophytes, gymnosperms and angiosperms. Plant Mol. Biol. 33: 11–21.PubMedGoogle Scholar
  4. Cullis C. A., Creissen G. P., Gorman S. W., Teasdale R. D. (1988) The 25S, 18S, and 5S ribosomal RNA genes fromPinus radiata D. Don. In: Cheliak W. M., Yapa A. C. (eds.) Molecular genetics of forest trees (Petawawa Nat. For. Inst. Inf. Rep. PI-X-80). Canadian Forest Service, Ontario, pp. 34–40.Google Scholar
  5. Devey M. E., Sewell M. M., Neale D. B. (1997) Common linkage map for loblolly and radiata pines. In: Burdon R. D., Moore J. M. (eds.) IUFRO '97 Genetics of radiata pine (FRI Bulletin No. 203). New Zealand Forest Research Institute, Rotorua, New Zealand, pp. 80–82.Google Scholar
  6. Doudrick R. L., Heslop-Harrison J. S., Nelson C. D., Schmidt T., Nance W. L., Schwarzacher T. (1995) Karyotype of slash pine (Pinus elliottii var.elliottii) using patterns of fluorescence in situ hybridization and fluorochrome banding. J. Hered. 86: 289–296.Google Scholar
  7. Hizume M. (1988) Karyomorphological studies in the family Pinaceae. Mem. Fac. Educ. Ehime Univ. Nat. Sci. 8: 1–108.Google Scholar
  8. Hizume M., Arai M., Tanaka A. (1990) Chromosome banding in the genusPinus. III. Fluorescent banding pattern ofP. luchuensis and its relationships among the Japanese diploxylon pines. Bot. Mag. Tokyo 103: 103–111.Google Scholar
  9. Hizume M., Ishida F., Murata M. (1992) Multiple locations of the rRNA genes in chromosomes of pines,Pinus densiflora andP. thunbergii. Jpn. J. Genet. 67: 389–396.Google Scholar
  10. Hizume M., Ohigiku A., Tanaka A. (1983) Chromosome banding in the genesPinus. I. Identification of chromosomes inP. nigra by fluorescent banding method. Bot. Mag. Tokyo 96: 273–276.Google Scholar
  11. Hizume M., Ohigiku A., Tanaka A. (1989) Chromosome banding in the genusPinus. II. Interspecific variation of fluorescent banding patterns inP. densiflora andP. thunbergii. Bot. Mag. Tokyo 102: 31–42.Google Scholar
  12. Jackson R. C. (1973) Chromosomal evolution inHaplopappus gracilis: a centric transposition race. Evolution 27: 243–256.Google Scholar
  13. Jacobs M. D., Murray B. G., Gardner R. C. (1997) Methods for cytogenetic characterization ofPinus radiata andP. taeda. In: Burdon R. D., Moore J. M. (eds.) IUFRO '97 Genetics of radiata pine (FRI Bulletin No. 203). New Zealand Forest Research Institute, Rotorua, New Zealand, pp. 71–75.Google Scholar
  14. Kamm S., Doudrick R. L., Heslop-Harrison J. S., Schmidt T. (1996) The genomic and physical organization ofTy1-copia-like sequences as a component of large genomes inPinus elliottii var.elliottii and other gymnosperms. Proc. Nat. Acad. Sci. USA 93: 2708–2713.PubMedGoogle Scholar
  15. King G. A., Davies K. M. (1992) Identification, cDNA cloning, and analysis of mRNAs having altered expression in tips of harvested asparagus spears. Plant Physiol. 100: 1661–1669.Google Scholar
  16. Leitch A. R., Schwarzacher T., Jackson D., Leitch I. J. (1994) In situ hybridization: a practical guide. BIOS Scientific Publishers, Oxford.Google Scholar
  17. Lubaretz O., Fuchs J., Ahne R., Meister A., Schubert I., (1996) Karyotyping of three Pinaceae species via fluorescent in situ hybridization and computer-aided chromosome analysis. Theor. Appl. Genet. 92: 411–416.Google Scholar
  18. MacPherson P., Filion W. G. (1981) Karyotype analysis and the distribution of constitutive heterochromatin in five species ofPinus J. Hered. 72: 193–198.Google Scholar
  19. Moran G. F., Smith D., Bell J. C., Appels R. (1992) The 5S RNA genes inPinus radiata and the spacer regions as a probe for relationships betweenPinus species. Plant Syst. Evol. 183: 209–221.Google Scholar
  20. Murray B. G., Davies B. J. (1996) An improved method for preparing the chromosomes of pines and other gymnosperms. Biotech. Histochem. 71: 115–117.PubMedGoogle Scholar
  21. Pederick L. A. (1967) The structure and identification of the chromosomes ofPinus radiata D. Don. Silvae Genet. 16: 69–77.Google Scholar
  22. Pederick L. A. (1970) Chromosome relationships betweenPinus species. Silvae Genet. 19: 171–180.Google Scholar
  23. Prager E. M., Fowler D. P., Wilson A. C. (1976) Rates of evolution in conifers (Pinaceae). Evolution 30: 637–649.Google Scholar
  24. Sastri D. C., Hilu K., Appels R., Lagudah E. S., Playford J., Baum B. R. (1992) An overview of evolution in plant 5S DNA. Plant Syst. Evol. 183: 169–181.Google Scholar
  25. Saylor L. C. (1972) Karyotype analysis of the genusPinus — subgenusPinus. Silvae Genet. 21: 155–163.Google Scholar
  26. Saylor L. C., Smith B. W. (1966) Meiotic irregularities in species and interspecific hybrids ofPinus. Amer. J. Bot. 53: 453–468.Google Scholar
  27. Schweizer D. (1980a) Simultaneous fluorescent staining of R-bands and specific heterochromatic regions (DA-DAPI bands) in human chromosomes. Cytogenet. Cell Genet. 27: 190–193.PubMedGoogle Scholar
  28. Schweizer D. (1980b) Fluorescent chromosome banding in plants: applications, mechanisms, and implications for chromosome structure. In The plant genome: proceedings of the 4th John Innes Symposium and Second International Haploid Conference. The John Innes Charity, Norwich, England, pp. 61–72.Google Scholar
  29. Seal A. G. (1982) C-banded wheat chromosomes in wheat andTriticale. Theoret. Appl. Genet. 63: 39–47.Google Scholar
  30. Tanaka R., Hizume M. (1980) C-banding treatment for the chromosomes of some gymnosperms. Bot. Mag. Tokyo 93: 167–170.Google Scholar

Copyright information

© Springer-Verlag 2000

Authors and Affiliations

  • M. D. Jacobs
    • 1
  • R. C. Gardner
    • 1
  • B. G. Murray
    • 1
  1. 1.School of Biological SciencesThe University of AucklandAucklandNew Zealand

Personalised recommendations