Linguistics and Philosophy

, Volume 17, Issue 6, pp 633–678 | Cite as

Term-labeled categorial type systems

  • Richard T. Oehrle


Artificial Intelligence Type System Computational Linguistic Categorial Type Categorial Type System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Aczel: 1994,Generalised Set Theory and the Modeling of Parametric Objects and Abstraction — a Preliminary Note, Paper presented at the Conference on Information-Oriented Approaches to Language, Logic, and Computation. Saint Mary's College of California, June 13–15, 1994.Google Scholar
  2. 2.
    K. Ajdukiewicz: 1935, ‘Die Syntaktische Konnexität’,Studia Philosophica 1, 1–27. (English translation in Storrs McCall (ed.),Polish Logic, Oxford University Press, 1967.)Google Scholar
  3. 3.
    Y. Bar-Hillel: 1953, ‘A Quasi-Arithmetical Notation for Syntactic Description’,Language 29, 47–58; reprinted in Bar-Hillel (1964), pp. 61–74.Google Scholar
  4. 4.
    Y. Bar-Hillel: 1964,Language and Information, Addison-Wesley, Reading, MA.Google Scholar
  5. 5.
    J. van Benthem: 1986,Essays in Logical Semantics, D. Reidel, Dordrecht.Google Scholar
  6. 6.
    J. van Benthem: 1991,Language in Action, North-Holland, Amsterdam.Google Scholar
  7. 7.
    W. Buszkowski: 1988, ‘Generative Power of Categorial Grammars’, in R. T. Oehrle, E. Bach, and D. Wheeler (eds.),Categorial Grammars and Natural Language Structures, D. Reidel, Dordrecht, pp. 69–94.Google Scholar
  8. 8.
    W. Buszkowski: 1987, ‘The Logic of Types’, in J. Szrednicki (ed.),Initiatives in Logic, M. Nijhoff, Dordrecht.Google Scholar
  9. 9.
    M. Calcagno: 1994,A Sign-Based Extension to the Lambek Calculus for Discontinuous Constituency, ms., Dept. of Linguistics, Ohio State University.Google Scholar
  10. 10.
    B. Carpenter: 1994,Quantification: a Deductive Account, ms., CMU.Google Scholar
  11. 11.
    M. Dalrymple, J. Lamping, F. C. N. Pereira, and V. Saraswat: 1994, ‘A Deductive Account of Quantification in LFG’, in M. Kanazawaet al. (eds.),Quantifiers, Deduction, and Context, CSLI, Stanford, California.Google Scholar
  12. 12.
    D. Gabbay: 1991,Labeled Deductive Systems, ms., Imperial College, London.Google Scholar
  13. 13.
    G. Gentzen: 1934–5, ‘Untersuchungen über das Logische Schliessen’,Mathematische Zeitschrift 39, 176–210, 405–431. (English translation in M. E. Szabo (ed.),The Collected Papers of Gerhard Gentzen, North-Holland, Amsterdam).Google Scholar
  14. 14.
    J.-Y. Girard: 1987, ‘Linear Logic’,Theoretical Computer Science 50, 1–102.Google Scholar
  15. 15.
    J.-Y. Girard, Y. Lafont, and P. Taylor: 1989,Proofs and Types, Cambridge Tracts in Theoretical Computer Science 7. Cambridge University Press, Cambridge.Google Scholar
  16. 16.
    H. Hendriks: 1987, ‘Type Change in Semantics: the Scope of Quantification and Coordination’, in E. Klein and J. van Benthem (eds.),Categories, Polmorphism and Unification, University of Edinburgh: Centre for Cognitive Science, and Amsterdam: Institute for Language, Logic, and Information.Google Scholar
  17. 17.
    H. Hendriks: 1989,Cut Elimination and Semantics in Lambek Calculus, ms., ITLI, Department of Philosophy, University of Amsterdam.Google Scholar
  18. 18.
    M. Hepple: 1994,Discontinuity and the Lambek Calculus, ms., Department of Computer Science, University of Sheffield.Google Scholar
  19. 19.
    J. R. Hindley and J. P. Seldin: 1986,Introduction to Combinators and λ-Calculus, London Mathematical Society Student Texts 1. Cambridge University Press, Cambridge.Google Scholar
  20. 20.
    W. A. Howard: 1980, ‘The Formulae-as-Types Notion of Construction’, in J. R. Hindley and J. P. Seldin (eds.),To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism, Academic Press.Google Scholar
  21. 21.
    P. T. Johnstone: 1987,Notes on Logic and Set Theory, Cambridge University Press, Cambridge.Google Scholar
  22. 22.
    E. L. Keenan: 1987, ‘Semantic Case Theory, in J. Groenendijk, M. Stokhof, and F. Veltman (eds.),Proceedings of the Sixth Amsterdam Colloquium, ITLI, University of Amsterdam.Google Scholar
  23. 23.
    J. Lambek: 1958, ‘The Mathematics of Sentence Structure’,American Mathematical Monthly 65, 154–170.Google Scholar
  24. 24.
    D. Miller: 1991, ‘A Logic Programming Language with Lambda-Abstraction, Function Variables, and Simple Unification’,Journal of Logic and Computation 1(4), 497–536.Google Scholar
  25. 25.
    M. Moortgat: 1988,Categorial Investigations: Logical and Linguistic Aspects of the Lambek Calculus, Foris, Dordrecht.Google Scholar
  26. 26.
    M. Moortgat: 1992, ‘The Logic of Discontinuous Type Constructors’, in W. Sijtsma and A. van Horck (eds.),Discontinuous Constituency, Mouton de Gruyer, Berlin.Google Scholar
  27. 27.
    M. Moortgat: 1990, ‘Unambiguous Proof Representations for the Lambek Calculus’, inProceedings of the 7th Amsterdam Colloquium, ITLI, University of Amsterdam.Google Scholar
  28. 28.
    M. Moortgat: 1991, ‘Labeled Deductive Systems for Categorial Theorem Proving’,Proceedings of the 8th Amsterdam Colloquium, Universiteit van Amsterdam.Google Scholar
  29. 29.
    M. Moortgat and R. T. Oehrle: 1993,Categorial Grammar: Logical Parameters and Linguistic Variation, Lecture notes, European Summer School in Logic, Language, and Information. Faculdade de Letras, Universidade de Lisboa, Portugal.Google Scholar
  30. 30.
    M. Moortgat and R. T. Oehrle:Elements of Categorial Grammar, in preparation.Google Scholar
  31. 31.
    G. Morrill: 1994,Clausal Proof Nets and Discontinuity, Paper presented at the London Workshop on Proof Theory and Linguistic Analysis.Google Scholar
  32. 32.
    R. T. Oehrle: 1981, ‘Lexical Justification’, in M. Moortgat, H. v.d. Hulst, and T. Hoekstra (eds.),The Scope of Lexical Rules, Foris, Dordrecht, pp. 201–228.Google Scholar
  33. 33.
    R. T. Oehrle: 1992, ‘Dynamic Categorial Grammars, in R. Levine (ed.),Formal Grammar: Theory and Implementation, Vancouver Studies in Cognitive Science, Vol. 2, Oxford University Press, Oxford, pp. 79–128.Google Scholar
  34. 34.
    R. T. Oehrle: 1988, ‘Multi-Dimensional Compositional Functions as a Basis for Grammatical Analysis’, in R. T. Oehrle, E. Bach, and D. Wheeler (eds.),Categorial Grammars and Natural Language Structures, D. Reidel, Dordrecht, pp. 349–389.Google Scholar
  35. 35.
    R. T. Oehrle: 1990, ‘Categorial Frameworks, Coordination, and Extraction’, in A. Halpern (ed.),Proceedings of the Ninth West Coast Conference on Formal Linguistics, CSLI, Stanford, pp. 411–425.Google Scholar
  36. 36.
    R. T. Oehrle: 1991,Grammatical Structural and Intonational Phrasing: a Logical Perspective, Working papers of the AAAI Fall Symposium on Discourse Structure in Natural Language Understanding and Generation, Asilomar.Google Scholar
  37. 37.
    R. T. Oehrle: 1992,Referential Types, Dynamic Context, and Referential Relations, ms., University of Arizona, Tucson.Google Scholar
  38. 38.
    R. T. Oehrle: 1994, ‘Some 3-Dimensional Systems of Labeled Deduction’,Proceedings of the London Workshop on Proof Theory and Linguistic Analysis, In preparation.Google Scholar
  39. 39.
    F. C. N. Pereira: 1990, ‘Prolog and Natural-Language Analysis: into the Third Decade’, in S. Debray and M. Hermenegildo (eds.),Logic Programming: Proceedings of the 1990 North American Conference, MIT Press, Cambridge, MA.Google Scholar
  40. 40.
    F. C. N. Pereira: 1991, ‘Semantic Interpretation as Higher-Order Deduction’, in J. van Eijck (ed.),Logics in AI, Springer, Berlin, pp. 78–96.Google Scholar
  41. 41.
    D. Roorda: 1990,Proof Nets for Lambek Calculus, ms. ITLI, University of Amsterdam.Google Scholar
  42. 42.
    D. Roorda: 1991,Resource Logics: Proof-Theoretical Investigations, Ph.D. thesis, Faculteit van Wiskunde en Informatica, Universiteit van Amsterdam.Google Scholar
  43. 43.
    R. Smullyan: 1968,First-Order Logic, Springer, Berlin.Google Scholar
  44. 44.
    M. Steedman: 1991, ‘Structure and Intonation’,Language 67, 260–296.Google Scholar
  45. 45.
    R. Thomason: 1974,Formal Philosophy: Selected Papers of Richard Montague, Yale University Press, New Haven.Google Scholar
  46. 46.
    L. A. Wallen: 1990,Automated Proof Search in Non-Classical Logics: Efficient Matrix Methods for Modal and Intuitionistic Logics, MIT Press, Cambridge, MA.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Richard T. Oehrle

There are no affiliations available

Personalised recommendations