Linguistics and Philosophy

, Volume 17, Issue 6, pp 537–560 | Cite as

Grammar formalisms viewed as evolving algebras

  • David E. Johnson
  • Lawrence S. Moss


We consider the use ofevolving algebra methods of specifying grammars for natural languages. We are especially interested in distributed evolving algebras. We provide the motivation for doing this, and we give a reconstruction of some classic grammar formalisms in directly dynamic terms. Finally, we consider some technical questions arising from the use of direct dynamism in grammar formalisms.


Artificial Intelligence Natural Language Computational Linguistic Dynamic Term Technical Question 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berry, G. and G. Boudol: 1992, ‘The Chemical Abstract Machine’,Theoretical Computer Science 96, 217–248.Google Scholar
  2. Börger, E. and D. Rosenzweig: 1992a,A Simple Mathematical Model for Full Prolog, Research report TR-33/92, Dipartimento di Informatica, Università di Pisa.Google Scholar
  3. Börger, E. and D. Rosenzweig: 1992b, ‘The WAM — Definition and Compiler Correctness’, Research report TR-14/92, Dipartimento di Informatica, Università di Pisa.Google Scholar
  4. Correa, N.: 1993, ‘Attribute and Unification Grammar: A Review and Analysis of Formalisms’, in W. Zadrozny et al. (eds.),Proceedings of the Second Meeting on Mathematics of Language, Special Issue ofAnnals of Mathematics and Artificial Intelligence 8(1–2).Google Scholar
  5. Glavan, P. and D. Rosenzweig: 1993, ‘Communicating Evolving Algebras’, in E. Börger et al. (eds.),Selected Papers from CSL '92 (Computer Science Logic), Springer LNCS 702, Berlin.Google Scholar
  6. Gurevich, Y.: 1991, ‘Evolving Algebras: A Tutorial Introduction’,Bulletin of the European Association for Theoretical Computer Science 43, 264–286.Google Scholar
  7. Gurevich, Y.: 1994, ‘Evolving Algebras 1993: Lipari Guide’, in E. Börger (ed.),Specification and Validation Methods, Oxford University Press.Google Scholar
  8. Gurevich, Y. and J. Huggins: 1993, ‘The Semantics of the C Programming Language’, in E. Börger et al. (eds.),Selected Papers from CSL '92, Springer LNCS 702, Berlin, pp. 274–308.Google Scholar
  9. Gurevich, Y. and J. Morris: 1988, ‘Algebraic Operational Semantics and Modula-2’, in E. Börger et al. (eds.),CSL'87, 1st Workshop on Computer Science Logic, Springer LNCS 329, Berlin, pp. 81–101.Google Scholar
  10. Gurevich, Y. and L.S. Moss: 1990, ‘Algebraic Operational Semantics and Occam’, in E. Börger et al. (eds.),Proceedings of the Third Workshop on Computer Science Logic, Springer LNCS 440, Berlin, pp. 176–196.Google Scholar
  11. Johnson, D. E. and P. M. Postal: 1980,Arc Pair Grammar, Princeton University Press.Google Scholar
  12. Johnson, D. E. and L. S. Moss: 1993, ‘Some Formal Properties of Stratified Feature Grammars’,Annals of Artificial Intelligence and Mathematics 9, 133–173.Google Scholar
  13. Knuth, D.: 1968, ‘Semantics of Context-Free Languages’,Mathematical Systems Theory 2(2), 127–145.Google Scholar
  14. Marsh, W. E.: 1987, ‘Graphs and Grammars’, in A. Manaster-Ramer (ed.),Mathematics of Language, John Benjamins, Amsterdam.Google Scholar
  15. Milner, R.: 1992, ‘Functions as Processes’,Mathematical Structures in Computer Science 2(2), 119–141.Google Scholar
  16. Partee, B., A. ter Meulen, and R. E. Wall: 1990,Mathematical Methods in Linguistics, Kluwer, Dordrecht.Google Scholar
  17. Petri, C. A.: 1973, ‘Concepts of Net Theory’, inMathematical Foundations of Computer Science, Mathematical Institute of the Slovak Academy of Sciences, 1973, pp. 137–146.Google Scholar
  18. Pollard, C.: 1984,Generalized Phrase Structure Grammars, Head Grammars, and Natural Language, PhD thesis, Stanford University.Google Scholar
  19. Reisig, W.: 1985,Petri Nets, Springer-Verlag, Berlin, 1985.Google Scholar
  20. Roach, K.: 1987, ‘Formal Properties of Head Grammars’, in A. Manaster-Ramer (ed.),Mathematics of Language, John Benjamins, Amsterdam.Google Scholar
  21. Weir, D. J., K. Vijay-Shanker, and A. K. Joshi: 1986, ‘Combinatory Categorial Grammars: Generative Power and Relationship to Linear Context-Free Rewriting Systems’, inProceedings of the 26th Meeting of the Association for Computational Linguistics, Association for Computational Linguistics.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • David E. Johnson
    • 1
  • Lawrence S. Moss
    • 2
  1. 1.Mathematical Sciences DepartmentThomas J. Watson Research Center IBM Research DivisionYorktown Heights
  2. 2.Mathematics Department Computer Science DepartmentIndiana UniversityBloomington

Personalised recommendations