Plant Systematics and Evolution

, Volume 224, Issue 1–2, pp 83–96 | Cite as

Calcium oxalate crystal types and trends in their distribution patterns in leaves ofPrunus (Rosaceae: Prunoideae)

  • N. R. Lersten
  • H. T. Horner


Calcium oxalate crystal types and distribution within leaves ofPrunus sensu lato (Rosaceae; Prunoideae) were surveyed from mostly herbarium specimens (196 specimens of 131 species of all five subgenera usually recognized). Rehydrated samples were bleached, mounted unstained, and viewed microscopically between crossed polarizers. Six patterns were recognized based on crystal type and relative distribution around veins and in mesophyll. Druses predominate in four subgenera, but prismatics are most common in subgenus Padus. Prunophora and Amygdalus, considered to be the most advanced subgenera, have virtually only druses, which are almost always associated with veins. Cerasus and Laurocerasus, intermediate subgenera, have the greatest diversity of patterns, but few species with prismatics. A trend is evident from mostly mesophyll prismatics in Padus to fewer prismatics and more druses of mixed distribution in Laurocerasus and Cerasus, to mostly druses restricted to veins in Amygdalus and Prunophora.

Key words

Rosaceae Prunus calcium oxalate crystals druses prismatics leaf anatomy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Badeness M. L., Parfitt D. E. (1995) Phylogenetic relationships of cultivatedPrunus species from an analysis of chloroplast DNA variation. Theor. Appl. Gen. 90: 1035–1041.Google Scholar
  2. Bade-Smith E. C. (1961) Chromatography and taxonomy in the Rosaceae, with special reference toPotentilla andPrunus. J. Linn. Soc., Bot. 58: 39–54.Google Scholar
  3. Carlquist S. (1961) Comparative plant anatomy. Holt, Rinehart and Winston, New York.Google Scholar
  4. Chartschenko W. (1932) Verschiedene Typen des mechanischen Gewebes und der kristallinischen Ausbildungen als systematische Merkmale der GattungAllium. Beih. Bot. Centralbl., Abt. 2, 50: 183–206.Google Scholar
  5. Dosuzeva T. V. (1969) Comparative-anatomical character of leaves of some species of the genusArmeniaca Mill. (Russ. w/.English summ.). Vestn. Leningrad Univ. 24, no. 9 (Ser. Biol., no. 2): 78–85.Google Scholar
  6. Fell K. R., Rowson J. M. (1956) Anatomical studies in the genusRubus. I. The anatomy of the leaf ofRubus idaeus L. J. Pharm. Pharmacol. 8: 334–345.PubMedGoogle Scholar
  7. Fell K. R., Rowson J. M. (1957) Anatomical studies in the genusRubus. II. The anatomy of the leaf ofR. fruticosus L. J. Pharm. Pharmacol. 9: 293–311.PubMedGoogle Scholar
  8. Fell K. R., Rowson J. M. (1960) Anatomical studies in the genusRubus. III. The anatomy ofRubus loganobaccus L. H. Bailey. J. Pharm. Pharmacol. 12: 473–487.Google Scholar
  9. Francheschi V. R., Horner H. T. Jr. (1980) Calcium oxalate crystals in plants. Bot. Rev. 46: 361–427.Google Scholar
  10. Frank E. (1972) The formation of crystal idioblasts inCanavalia ensiformis DC. at different levels of calcium supply. Z. Pflanzenphysiol. 67: 350–358.Google Scholar
  11. Fritsch K. (1887) Anatomisch-systematische Studien über die GattungRubus. Sitzb. Math-Naturwiss. Cl. K. Akad. Wiss. Wien XCV, Band 1: 187–211.Google Scholar
  12. Holm T. (1909) No. 33.Prunus serotina Ehrh. Merck's Rep. 18: 287–290.Google Scholar
  13. Horner H. T. Jr., Arnott H. J. (1961) The use of a multiple compartment tray for processing many specimens at one time. Stain Technol. 36: 204–205.PubMedGoogle Scholar
  14. Horner H. T., Wagner B. L. (1995) Calcium oxalate formation in higher plants. In: Khan S. R. (ed.) Calcium oxalate in biological systems. CRC Press, Boca Raton, FL, pp. 53–72.Google Scholar
  15. Hufford L. (1997) A phylogenetic analysis of Hydrangeaceae based on morphological data. Int. J. Plant Sci. 158: 652–672.Google Scholar
  16. Kalkman C. (1965) The old world species ofPrunus subg. Laurocerasus including those formerly referred toPygmeum. Blumea 13: 1–115.Google Scholar
  17. McVaugh R. (1951) Suggested phylogeny ofPrunus serotina and other wide-ranging phylads in North America. Brittonia 7: 317–346.Google Scholar
  18. Metcalfe C. R. (1983) Secreted mineral substances: crystals. In: Metcalfe C. R., Chalk L. (eds.) Anatomy of the Dicotyledons, 2nd ed., Vol. II. Clarendon Press, Oxford, pp. 82–92.Google Scholar
  19. Metcalfe C. R., Chalk L. (1950) Anatomy of the Dicotyledons. 2 vols. Clarendon Press, Oxford.Google Scholar
  20. Mowrey B. D., Werner D. J. (1990) Phylogenetic relationships among species ofPrunus as inferred by isozyme markers. Theor. Appl. Genet. 80: 129–132.Google Scholar
  21. Napp-Zinn K. (1973–1974) Anatomie des Blattes. Blattanatomie der Angiospermen. Encyclopedia of Plant Anatomy, Vol. VIII, pt. 2A. Gebrüder Bornträger, Berlin.Google Scholar
  22. Rehder A. (1940) Manual of cultivated trees and shrubs hardy in North America. 2nd edn. The Macmillan Company, New York.Google Scholar
  23. Schimper A. F. W. (1888) Ueber Kalkoxalatbildung in den Laubblättern. Bot. Zeit. 46: 64–69, 80–89, 97–107, 113–123, 129–139, 145–153.Google Scholar
  24. Solereder H. (1908) Systematic anatomy of the dicotyledons. L. A. Boodle and F. E. Fritsch, English translation, Vols. 1 and 2. Clarendon Press, Oxford.Google Scholar
  25. Virchow H. (1896) Bau der Blattzähne und der Blattspitze von Blättern näherverwandter Arten. Archiv Pharm. 234: 94–154.Google Scholar
  26. Webb M. A. (1999) Cell-mediated crystallization of calcium oxalate in plants. Pl. Cell 11: 751–761.Google Scholar
  27. Zhang S.-Y. (1992) Systematic wood anatomy of the Rosaceae. Blumea 37: 81–158.Google Scholar
  28. Zindler-Frank E. (1987) Calcium oxalate crystals in legumes. In: Stirton C. H. (ed.) Advances in legume systematics, Part 3. Royal Botanic Gardens, Kew, London, pp. 279–316.Google Scholar

Copyright information

© Springer-Verlag 2000

Authors and Affiliations

  • N. R. Lersten
    • 1
  • H. T. Horner
    • 1
  1. 1.Department of BotanyIowa State UniversityAmesUSA

Personalised recommendations