Plant Systematics and Evolution

, Volume 224, Issue 1–2, pp 55–82 | Cite as

Phylogenetic relationships of the durians (Bombacaceae-Durioneae or /Malvaceae/Helicteroideae/Durioneae) based on chloroplast and nuclear ribosomal DNA sequences

  • R. Nyffeler
  • D. A. Baum


The circumscription and phylogenetic position of the tribe Durioneae (Bombacaceae or /Malvaceae/Helicteroideae) was investigated by supplementing a previously publishedndhF data set. The present analysis supports a narrow conception of Durioneae (excludingCamptostemon andPapuodendron) and confirms a close relationship withHelicteres, Reevesia, Ungeria, andTriplochiton (all of traditional Sterculiaceae). Phylogenetic relationships within Durioneae were inferred from a combined analysis ofndhF and ITS sequences. These data suggest thatNeesia is sister to a clade comprising all other five genera of core Durioneae, and thatCoelostegia +Kostermansia form a clade that is sister toCullenia +Boschia +Durio. Various morphological features support these relationships. However, characters usually considered diagnostic for the entirety of Durioneae, such as a densely lepidote lower leaf surface and uni- or polylocular anthers, appear to be apomorphic within this clade. Likewise, spiny fruits and large arils covering the seeds are not plesiomorphic for Durioneae, in contradiction to Corner's classic Durian Theory. The phylogeny suggests that bat- and bird-pollination evolved from beetle-pollination and that this transition was coincident with extensive androecial modification. Similarities due to convergent evolution of floral traits in relation to pollination by birds and mammals probably account for the erroneous, traditional placement of Durioneae in Bombacaceae.

Key words

Bombacaceae Malvaceae Sterculiaceae Durioneae ITS ndhsystematics phylogenetics floral evolution pollination Durian Theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alverson W. S., Karol K. G., Baum D. A., Chase M. W., Swensen S. M., McCourt R., Sytsma K. J. (1998) Circumscription of the Malvales and relationships to other Rosidae: evidence fromrbcL sequence data. Amer. J. Bot. 85: 876–887.Google Scholar
  2. Alverson W. S., Whitlock B. A., Nyffeler R., Bayer C., Baum D. A. (1999) Phylogeny of the core Malvales: evidence fromndhF sequence data. Amer. J. Bot. 86: 1476–1486.Google Scholar
  3. Ashton P. S. (1988) Manual of the non-dipteroarp trees of Sarawak. Dewon Bahasa dan Pustaka, Kuching.Google Scholar
  4. Baas P. (1972) The vegetative anatomy ofKostermansia malayana Soegeng. Reinwardtia 8: 335–344.Google Scholar
  5. Bakhuizen van den Brink R. C. (1924) Revisio Bombacacearum. Bull. Jard. Bot. Buitenzorg, Ser. 3, 6: 161–253, p. 26–38.Google Scholar
  6. Baldwin B. G. (1992) Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the Compositae. Molec. Phylogenet. Evol. 1: 3–16.PubMedGoogle Scholar
  7. Baldwin B. G., Sanderson M. J., Porter J. M., Wojciechowski M. F., Campbell C. S., Donoghue M. J. (1995) The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann. Missouri Bot. Gard. 82: 247–277.Google Scholar
  8. Baum D. A. (1995) The comparative pollination and floral biology of Baobabs (Adansonia — Bombacaceae). Ann. Missouri Bot. Gard. 82: 322–348.Google Scholar
  9. Baum D. A., Alverson W. S., Nyffeler R. (1998a) A durian by any other name: taxonomy and nomenclature of the core Malvales. Harvard Pap. Bot. 3: 315–330.Google Scholar
  10. Baum D. A., Oginuma K. (1994) A review of chromosome numbers in Bombacaceae with new counts forAdansonia. Taxon 43: 11–20.Google Scholar
  11. Baum D. A., Small R. L., Wendel J. F. (1998b) Biogeography and floral evolution of baobabs (Adansonia, Bombacaceae) as inferred from multiple data sets. Syst. Biol. 47: 181–207.PubMedGoogle Scholar
  12. Baum D. A., Sytsma K. J., Hoch P. C. (1994) A phylogenetic analysis ofEpilobium (Onagraceae) based on nuclear ribosomal DNA sequences. Syst. Bot. 19: 363–388.Google Scholar
  13. Bayer C., Fay M. F., De Bruijn A. Y., Savolainen V., Morton C. M., Kubitzki K., Alverson W. S., Chase M. W. (1999) Support for an expanded family concept of Malvaceae within a recircumscribed order Malvales: a combined analysis of plastidatpB andrbcL DNA sequences. Bot. J. Linn. Soc. 129: 267–303.Google Scholar
  14. Beccari O. (1889) Durioneae In: Malesia. Fratelli Bencini, Florence, 3(4): 202–280, plates XII–XXXVI.Google Scholar
  15. Bentham G., Hooker J. D. (1862–1867) Genera Plantarum. London, vol. 1.Google Scholar
  16. Bremer K. (1988) The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42: 795–803.Google Scholar
  17. Brown M. J. (1997)Durio — a bibliographic review. New Delhi: International Plant Genetic Resources Institute.Google Scholar
  18. Buckler IV E. S., Ippolito A., Holtsford T. P. (1997) The evolution of ribosomal DNA: divergent paralogues and phylogenetic implications. Genetics 145: 821–832.PubMedGoogle Scholar
  19. Corner E. J. H. (1949) The Durian Theory or the origin of the modern tree. Ann. Bot., new ser. 13: 367–414.Google Scholar
  20. Corner E. J. H. (1953) The Durian Theory extended-I. Phytomorphology 3: 465–476.Google Scholar
  21. Corner E. J. H. (1954a) The Durian Theory extended-II. The arillate fruit and the compound leaf. Phytomorphology 4: 152–165.Google Scholar
  22. Corner E. J. H. (1954b) The Durian Theory extended-III. Pachycauly and megaspermy — conclusion. Phytomorphology 4: 263–274.Google Scholar
  23. Corner E. J. H. (1988) Wayside Trees of Malaya. Vol. 1, edn. 3. Malayan Nature Society, Kuala Lumpur.Google Scholar
  24. Craig J. E. (1973) The Durian. Horticulture 51: 64–65.Google Scholar
  25. Cronquist A. (1981) An integrated system of classification of flowering plants. Columbia University Press, New York.Google Scholar
  26. Donoghue M. J., Olmstead R. G., Smith J. F., Palmer J. D. (1992) Phylogenetic relationships of Dipsacales based onrbcL sequences. Ann. Missouri Bot. Gard. 79: 333–345.Google Scholar
  27. Edlin H. L. (1935) A critical revision of certain taxonomic groups of the Malvales. Part II. New Phytol. 34: 122–143.Google Scholar
  28. Endress P. K. (1973) Arils and aril-like structures in woody Ranales. New Phytol. 72: 1159–1171.Google Scholar
  29. Erdtman G. (1952) Pollen morphology and plant taxonomy. Angiosperms. Almqvist & Wiksell, Stockholm.Google Scholar
  30. Faegri K., van der Pijl L. (1979) The principles of pollination ecology. 3rd. edn. Pergamon Press, Oxford.Google Scholar
  31. Farris J. S., Källersjö M., Kluge A. G., Bult C. (1994) Testing significance of incongruence. Cladistics 10: 315–319.Google Scholar
  32. Felsenstein J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.Google Scholar
  33. Fryxell P. A. (1968) A redefinition of the tribe Gossypieae. Bot. Gaz. 129: 296–308.Google Scholar
  34. Fuchs H. P. (1967) Pollen morphology of the family Bombacaceae. Rev. Palaeobot. Palyn. 3: 119–132.Google Scholar
  35. Ganesh T., Davidar P. (1997) Flowering phenology and flower predation ofCullenia exarillata (Bombacaceae) by arboreal vertebrates in Western Ghats, India. J. Trop. Ecol. 13: 459–468.Google Scholar
  36. Hasegawa M., Hashimoto T. (1993) Ribosomal RNA trees misleading? Nature 361: 23.PubMedGoogle Scholar
  37. Hasegawa M., Kishino H., Yano T.-A. (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Molec. Evol. 22: 160–174.PubMedGoogle Scholar
  38. van Heel W. A. (1966) Morphology of the androecium in Malvales. Blumea 13: 177–394.Google Scholar
  39. van Heel W. A. (1972) The taxonomic position ofPapuodendron C. T. White as elucidated by anatomical characters. Reinwardtia 8: 319–321.Google Scholar
  40. Heithaus P., Opler P., Baker H. G. (1974) Bat activity and pollination ofBauhinia pauletia. Ecology 55: 412–419.Google Scholar
  41. Hershkovitz M. A., Hahn W. J., Zimmer E. A. (1999) Ribosomal DNA sequences and angiosperm systematics. In: Hollingsworth P. M., Bateman R. M., Gornall R. (eds.) Molecular Systematics and Plant Evolution. Francis & Taylor, London, pp. 268–326.Google Scholar
  42. Hutchinson J. (1967) The genera of flowering plants. Dicotyledones. Clarendon Press, Oxford, vol. 2.Google Scholar
  43. Judd W. S., Manchester S. R. (1997) Circumscription of Malvaceae (Malvales) as determined by a preliminary cladistic analysis of morphological, anatomical, palynological, and chemical characters. Brittonia 49: 384–405.Google Scholar
  44. Kapil R. N., Bor J., Bouman F. (1980) Seed appendages in Angiosperms. Bot. Jahrb. Syst. 101: 555–573.Google Scholar
  45. Kluge A. G., Farris J. S. (1969) Quantitative phyletics and the evolution of anurans. Syst. Zool. 18: 1–32.Google Scholar
  46. König C. (1804) Observations on the durian,Durio zibethinus of Linnaeus. Trans. Linn. Soc. London 7: 266–273, 3p.Google Scholar
  47. Kostermans A. J. G. H. (1956) The genusCullenia Wight (Bombacaceae). Reinwardtia 4(1): 69–74.Google Scholar
  48. Kostermans A. J. G. H. (1958a) The genusDurio Adans. (Bombac.). Reinwardtia 4(3): 357–460.Google Scholar
  49. Kostermans A. J. G. H. (1958b) Additional note onCullenia ceylanica K. Schum. (Bombac.) Reinwardtia 4(3): 461–463.Google Scholar
  50. Kostermans A. J. G. H. (1960) Miscellaneous botanical notes. Reinwardtia 5(3): 233–254.Google Scholar
  51. Lee D. (1985) The durian: a most magnificent and elusive fruit. Bull. Fairchild Trop. Gard. 40: 18–27.Google Scholar
  52. Maddison W. P., Maddison D. R. (1992) MacClade, version 3.05. Sinauer, Sunderland (Massachusetts).Google Scholar
  53. Mabberley D. J. (1997) The Plant-Book. 2nd. edn. Cambridge University Press, Cambridge.Google Scholar
  54. Masters M. T. (1874) Monographic sketch of the Durioneae. Linn. J. Bot. 14: 495–508, pp. 14–16.Google Scholar
  55. Mendoza D. R. (1941) Natural distribution of durians in the Philippines. Philippine J. Forestry 4: 27–35.Google Scholar
  56. Momose K., Yumoto T., Nagamitsu T., Kato M., Nagamasu H., Sakai S., Harrison R. D., Itioka T., Hamid A. A., Inoue T. (1998) Pollination biology in a lowland dipterocarp forest in Sarawak, Malaysia. I. Characteristics of the plant-pollinator community in a lowland dipterocarp forest. Amer. J. Bot. 85: 1477–1501.Google Scholar
  57. Morton J. F. (1987) Fruits of warm climates. Published by the author, Miami.Google Scholar
  58. Naylor G. J. P., Brown W. M. (1998) Amphioxus mitochondrial DNA, chordate phylogeny, and the limits of inference based on comparisons of sequences. Syst. Biol. 47: 61–76.PubMedGoogle Scholar
  59. Olmstead R. G., Reeves P. A. (1995) Evidence for the polyphyly of the Scrophulariaceae based on chloroplastrbcL andndhF sequences. Ann. Missouri Bot. Gard. 82: 176–193.Google Scholar
  60. Olmstead R. G., Sweere J. A. (1994) Combining data in phylogenetic systematics: an empirical approach using three molecular data sets in the Solanaceae. Syst. Biol. 43: 467–481.Google Scholar
  61. Olmstead R. G., Sweere J. A., Wolfe K. H. (1993) Ninety extra nucleotides in thendhF gene of tobacco chlorplast DNA: a summary of revisions to the 1986 genome sequence. Pl. Molec. Biol. 22: 1191–1193.Google Scholar
  62. Parkin J. (1953) The Durian Theory — a criticism. Phytomorphology 3: 80–88.Google Scholar
  63. van der Pijl L. (1936) Fledermäuse und Blumen. Flora 31: 1–40.Google Scholar
  64. de Queiroz K. (1997) The Linnaean hierarchy and the evolutionization of taxonomy, with emphasis on the problem of nomenclature. Aliso 15: 125–144.Google Scholar
  65. Robyns A. (1970) Revision of the genusCullenia Wight. Bull. Jard. Bot. Nat. Belg. 40: 241–254.Google Scholar
  66. Robyns A., Nilsson S., Dechamps R. (1977) Sur la position systématique du genreMaxwellia Baillon. Bull. Jard. Bot. Nat. Belg. 47: 145–153.Google Scholar
  67. Sanderson M. J., Donoghue M. J. (1989) Patterns of variation in levels of homoplasy. Evolution 43: 1781–1795.Google Scholar
  68. Saunders E. R. (1937) Floral morphology. A new outlook, with special reference to the interpretation of the gynaeceum. vol. 1. Heffer, Cambridge.Google Scholar
  69. Schumann K. (1890) Bombacaceae. In: Engler A., Prantl K. (eds.) Die natürlichen Pflanzenfamilien, 1st edn., part 3(6). Wilhelm Engelmann, Leipzig, pp. 53–68.Google Scholar
  70. Schumann K. (1897) Bombacaceae. Nachträge zu Band 3(6). In: Engler, A., Prantl K. (eds.) Die natürlichen Pflanzenfamilien, 1st edn. 1. Wilhelm Engelmann, Leipzig, p. 240.Google Scholar
  71. Seelanan T., Schnabel A., Wendel J. F. (1997) Congruence and consensus in the cotton tribe (Malvaceae). Syst. Bot. 22: 259–290.Google Scholar
  72. Soegeng Reksodihardjo W. (1959)Kostermansia Soegeng. A new genus in Bombacaceae (Durioneae). Reinwardtia 5(1): 1–9.Google Scholar
  73. Soegeng Reksodihardjo W. (1960) The genusCoelostegia Benth. (Bombacaceae). Reinwardtia 5(3): 269–291.Google Scholar
  74. Soegeng Reksodihardjo W. (1962) The species ofDurio with edible fruits. Econ. Bot. 16: 270–282.Google Scholar
  75. Soepadmo E. (1960) A monograph of the genusNeesia Blume (Bombacaceae). Reinwardtia 5(4): 481–508.Google Scholar
  76. Soepadmo E., Eow B. K. (1976) The reproductive biology ofDurio zibethinus Murr. Gardens' Bull., Singapore 29: 25–33.Google Scholar
  77. Solheim S. L. (1991)Reevesia andUngeria (Sterculiaceae): a taxonomic and biogeographic study. Doctoral thesis, University of Wisconsin, Madison.Google Scholar
  78. Start A. N., Marshall A. G. (1976) Nectarivorous bats as pollintors of trees in West Malaysia. In: Burley J., Styles B. T. (eds.) Tropical trees: variation, breeding, and conservation. Academic Press, London.Google Scholar
  79. Swofford D. L. (1999) PAUP*: Phylogenetic Analysis Using Parsimony, version 4.0 beta 2. Sinauer, Sunderland (Masschusetts).Google Scholar
  80. Swofford D. L., Olsen G. J., Waddell P. J., Hillis D. M. (1996) Phylogenetic inference. In: Hillis D. M., Moritz C., Mable B. K. (eds.) Molecular Systematics, 2nd edn. Sinauer, Sunderland (Massachusetts), pp. 407–514.Google Scholar
  81. Takhtajan A. L. (1987) Systema Magnoliophytorum. Nauka, Leningrad.Google Scholar
  82. Takhtajan A. L. (1997) Diversity and classification of flowering plants. Columbia University Press, New York.Google Scholar
  83. von Teichman I., van Wyk A. E. (1991) Trends in the evolution of dicotyledonous seeds based on character associations, with special reference to pachychalazy and recalcitrance. Bot. J. Linn. Soc. 105: 211–237.Google Scholar
  84. Templeton A. R. (1983) Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the humans and apes. Evolution 37: 221–244.Google Scholar
  85. Thompson J. D., Higgins D. G., Gibson T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Research. 22: 4673–4680.PubMedGoogle Scholar
  86. Tuttle M. D. (1990) Return to Thailand. — Bat Conservation International, Fall 1990: 7–11 and cover text.Google Scholar
  87. White C. T. (1946)Papuodendron, a new genus of arborescent Malvaceae from New Guinea. J. Arnold. Arbor. 27: 272–274.Google Scholar
  88. White T. J., Bruns T., Lee S., Taylor J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M., Gelfand D., Sninsky J., White T. (eds.) PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, pp. 315–322.Google Scholar
  89. Whitlock B. A., Bayer C., Baum D. A. (in press) Phylogenetic relationships and flora evolution of the Byttnerioideae (“Sterculiaceae” or Malvaceae s.l.) based on sequences of the chloroplast genendhF. Systematic Botany.Google Scholar
  90. Whitmore T. C. (1972) Tree Flora of Malaya. A Manual for Foresters. vol. 1. Longman, London.Google Scholar
  91. Winship P. R. (1989) An improved method for directly sequencing PCR amplified material using dimethyl sulphoxide. Nucleic Acids Research 17: 1266.PubMedGoogle Scholar
  92. Yang Z., Goldman N., Friday A. (1995) Maximum likelihood trees from DNA sequences: A peculiar statistical estimation problem. Syst. Biol. 44: 384–399.Google Scholar
  93. Yokota Y., Kawata T., Iida Y., Kato A., Tanifuji S. (1989) Nucleotide sequences of the 5.8S rRNA gene and internal transcribed spacer regions in carrot and broad bean ribosomal DNA. J. Molec. Evol. 26: 294–301.Google Scholar

Copyright information

© Springer-Verlag 2000

Authors and Affiliations

  • R. Nyffeler
    • 1
  • D. A. Baum
    • 1
  1. 1.Department of Organismic and Evolutionary BiologyHarvard University HerbariaCambridgeUSA

Personalised recommendations