Plant Systematics and Evolution

, Volume 224, Issue 1–2, pp 13–32 | Cite as

Intercontinental dispersal: The origin of the widespread South American plant speciesGilia laciniata (Polemoniaceae) from a rare California and Oregon coastal endemic

  • P. L. Morrell
  • J. M. Porter
  • E. A. Friar
Article

Abstract

Although separated by 7000-km,Gilia millefoliata, a rare annual plant from California and Oregon coastal dunes andG. valdiviensis, a rare Chilean coastal endemic are morphologically and ecologically quite similar. Their disjunct distribution was proposed to result from recent, birdmediated, intercontinental long-distance dispersal. Both species are morphologically similar to the abundant and ecologically diverse South American taxonG. laciniata. The relationship among these three taxa was investigated using DNA sequence from the nuclear ribosomal (ITS) and chloroplasttrnL regions, as well as isozyme and morphological variation to determine the roles of long-distance dispersal and ecological adaptation in the evolution of the group. These data suggest that aG. millefoliata-like ancestor underwent long-distance dispersal to South America, and there gave rise to the narrow endemicG. valdiviensis and the widespreadG. laciniata.

Key words

Polemoniaceae Gilia millefoliata Gilia laciniata Long-distance dispersal Baker's Rule ITS sequence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arroyo M. T. K., Marticorena C., Muñoz M. (1990) A checklist of the native annual flora of continental Chile. Gayana 47: 119–135.Google Scholar
  2. Axelrod D. I. (1992) Miocene floristic change at 15 Ma, Nevada to Washington, USA. Palaeobotanist 41: 234–239.Google Scholar
  3. Baker H. G. (1955) Self-compatibility and establishment after “long-distance” dispersal. Evolution 9: 347–348.Google Scholar
  4. Baker H. G. (1967) Support for Baker's law as a rule. Evolution 21: 853–856.Google Scholar
  5. Baker H. G., Cox P. A. (1984) Further thoughts on dioecism and islands. Ann. Missouri Bot. Gard. 71: 244–253.Google Scholar
  6. Baldwin B. G. (1997) Adaptive radiation of the Hawaiian silversword alliance: congruence and conflict of phylogenetic evidence from molecular and non-molecular investigations. In: Givnish T. J., Sytsma K. J. (eds.) Molecular evolution and adaptive radiation. Cambridge University Press, Cambridge, U.K., pp. 103–128.Google Scholar
  7. Baldwin B. G., Sanderson M. J. (1998) Age and rate of diversification of the Hawaiian silversword alliance (Compositae). Proc. Natl. Acad. Sci. U.S.A. 95: 9402–9406.PubMedGoogle Scholar
  8. Bray W. L. (1900) The relations of the North American flora to that of South America. Science 12: 709–716.Google Scholar
  9. Cabrera A. L. (1965) Flora de la Provincia de Buenos Aires. (V). Colecc. Ci. INTA. Librart, Buenos Aires.Google Scholar
  10. Carlquist S. (1966) The biota of long distance dispersal. Evolution 20: 30–48.Google Scholar
  11. Carlquist S. (1981) Chance dispersal. Amer. Sci. 69: 509–516.Google Scholar
  12. Carlquist S. (1983) Intercontinental dispersal. Sonderb. Naturwiss. Vereins Hamburg 7: 37–47.Google Scholar
  13. Constance L. (1963) Amphitropical relationships in the herbaceous flora of the Pacific coast of North and South America: a symposium — introduction and historical review. Quart. Rev. Bio. 38: 109–116.Google Scholar
  14. Crawford D. J. (1990) Plant molecular systematics: macromolecular approaches. John Wiley & Sons, New York.Google Scholar
  15. Cruden R. (1966) Birds as agents of long-distance dispersal for disjunct plant groups of the temperate western hemisphere. Evolution 20: 517–532.Google Scholar
  16. Darwin C. (1876) The effects of cross and self fertilization in the vegetable kingdom. Appleton, New York.Google Scholar
  17. Day A. G. (1993)Gilia. In: Hickman J. C. (ed.) The Jepson manual: Higher plants of California. Univ. California Press, Berkeley, CA, pp. 828–836.Google Scholar
  18. Engler A. (1882) Versuch einer Entwicklungsgeschichte der Pflanzenwelt, insbesondere der Florengebiete seit der Tertiärperiode. (2). Engelmann, Leipzig.Google Scholar
  19. Felsenstein J. (1985) Confidence limits of phylogenies: an approach using the bootstrap. Evolution 39: 783–791.Google Scholar
  20. Felsenstein J. (1995) PHYLIP (Phylogeny Inference Package) version 3.572 Department of Genetics, University of Washington, Seattle.Google Scholar
  21. Flower B. P., Kennett J. P. (1994) The middle Miocene climatic transition: east Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeogr. Palaeoclimatol. Palaeoecol. 108: 537–555.Google Scholar
  22. Gay C. (1849) Historia de Chile. (4). El Museo de Historia Natural de Santiago, Paris.Google Scholar
  23. Givnish T. J. (1997) Adaptive radiation and molecular systematics: issues and approaches. In: Givnish T. J., Sytsma K. J. (eds.) Molecular evolution and adaptive radiation. Cambridge University Press, Cambridge, UK, pp. 1–54.Google Scholar
  24. Grant V. (1952a) Cytogenetics of the hybridGilia millefoliata Xachilleaefolia I. Variations in meiosis and polyploidy rate as affected by nutritional and genetic conditions. Chromosoma 5: 372–390.PubMedGoogle Scholar
  25. Grant V. (1952b) Genetic and taxonomic studies inGilia. III. TheGilia tricolor complex. Aliso 2: 375–388.Google Scholar
  26. Grant V. (1954) Genetic and taxonomic studies inGilia. V.Gilia clivorum. Aliso 3: 19–34.Google Scholar
  27. Grant V. (1958) The regulation of recombination in plants. Cold Springs Harbor Symp. Quant. Biol. 23: 337–363.Google Scholar
  28. Grant V. (1959) Natural history of the Phlox family. Martinus Nijhoff, The Hague.Google Scholar
  29. Grant V. (1965) Species hybrids and spontaneous amphiploids in theGilia laciniata group. Heredity 20: 537–550.Google Scholar
  30. Grant V. (1966) Genetic and taxonomic studies inGilia XIII. TheGilia laciniata group. Aliso 6: 67–80.Google Scholar
  31. Gray A., Hooker J. D. (1880) The vegetation of the Rocky Mountain region and a comparison with that of other parts of the world. U.S. Geol. Geograph. Surv. Territories, Bull. 6: 1–77.Google Scholar
  32. Heckard L. (1963) The Hydrophyllaceae. Quart. Rev. Bio. 38: 117–123.Google Scholar
  33. Hengeveld R. (1990) Dynamic biogeography. Cambridge University Press, Cambridge.Google Scholar
  34. Johnson L. A., Soltis D. E. (1995) Phylogenetic inference in Saxifragaceae sensu stricto andGilia (Polemoniaceae) usingmatK sequences. Ann. Missouri Bot. Gard. 82: 149–175.Google Scholar
  35. Lewis P., Whitkus R. (1988) Genestat-PC 3.31. Ohio State Univ., Columbus, Ohio.Google Scholar
  36. Maddison W. P., Maddison D. R. (1992) MacClade 3.07. Sinauer, Sunderland, MA.Google Scholar
  37. Moore D. H., Lewis H. (1966) Variation and evolution in South AmericanClarkia. Heredity 21: 37–56.Google Scholar
  38. Morrell P. L. (1997) Test of speciation models inGilia (Polemoniaceae). PhD. Claremont Graduate School.Google Scholar
  39. Morrell P. L., Rieseberg L. H. (1998) Molecular tests of the proposed diploid hybrid origin ofGilia achilleifolia (Polemoniaceae). Amer. J. Bot. 85: 1439–1453.Google Scholar
  40. Nei M. (1987) Molecular evolutionary genetics. Columbia Univ. Press, New York.Google Scholar
  41. Pannell J., Barrett S. (1998) Baker's law revisited: Reproductive assurance in a metapopulation. Evolution 52: 657–668.Google Scholar
  42. Porter J. M. (1997) Phylogeny of Polemoniaceae based on nuclear ribosomal transcribed spacer DNA sequences. Aliso 15: 57–77.Google Scholar
  43. Oregon Natural Heritage Program (1998) Rare, threatened and endangered species of Oregon. Oregon Natural Heritage Program, Portland, OR.Google Scholar
  44. Raven P. H. (1963) Amphitropical relationships in the floras of North and South America. Quart. Rev. Biol. 38: 151–177.Google Scholar
  45. Raven P. H. (1973) The evolution of mediterranean floras. In: di Castri F. M., H.A. (eds.) Mediterranean type ecosystems origin and structure. Springer, New York, pp. 405.Google Scholar
  46. Raven P. H. Axelrod D. I. (1978) Origin and relationships of the California flora. Univ. Calif. Publ. Bot. 72: 1–134.Google Scholar
  47. Raven P. H., Lewis H. (1959) The relationship of clarkias from two continents. Brittonia 11: 193–205.Google Scholar
  48. Reiche K. (1910) Polemoniaceae. In: Estudios Críticos sobre la Flora de Chile. Santiago, Chile Universidad. Anales, pp. 146–158.Google Scholar
  49. Rieseberg L. H., Brouillet L. (1994) Are many plant species paraphyletic? Taxon 43: 21–32.Google Scholar
  50. Simpson G. G. (1953) The major features of evolution. Columbia Univ. Press, New York.Google Scholar
  51. Solbrig O. T., Cody M. L., Fuentes E. R., Glanz W., Hunt J. H., Moldenke A. R. (1977) The origin of the biota. In: Mooney H. A. (ed.) Convergent evolution in Chile and California, mediterranean climate ecosystems. Dowden, Hutchinson & Ross, Inc., Stroudsburg, Pennsylvania, pp. 13–26.Google Scholar
  52. Soltis D. E., Haufler C. H., Darrow D. C., Gastony G. J. (1983) Starch gel electrophoresis of ferns: a compilation of grinding buffers, gel and electrode buffers, and staining schedules. Amer. Fern J. 73: 9–27.Google Scholar
  53. Spencer S. C., Porter J. M. (1997) Evolutionary diversification and adaptation to novel environments inNavarretia (Polemoniaceae). Syst. Bot. 22: 649–668.Google Scholar
  54. Stebbins G. L. (1957) Self fertilization and population variability in the higher plants. Amer. Nat. 91: 337–354.Google Scholar
  55. Swofford D., Olsen G. L., Waddell P. J., Hillis D. M. (1996) Phylogenetic inference. In: Hillis D. M., Moritz C., Mable B. K. (eds.) Molecular systematics. Sinauer Associates, Inc., Sunderland, Massachusetts, pp. 407–514.Google Scholar
  56. Vargas P., Baldwin B. G., Constance L. (1998) Nuclear ribosomal DNA evidence for a western North American origin of Hawaiian and South American species ofSanicula (Apiaceae). Proc. Natl. Acad. Sci. U.S.A. 95: 235–240.PubMedGoogle Scholar
  57. Wallace A. R. (1911) Island life or the phenomena and causes of insular faunas and floras including a revision and attempted solution of the problem of geological climates. (Third ed.). MacMillan and Co., London.Google Scholar
  58. Weir B. S. (1996) Genetic data analysis II, methods for discrete population genetic data. Sinauer Associates, Inc., Sunderland, MA.Google Scholar
  59. Wendel J. F., Weeden N. F. (1989) Visualization and interpretation of plant isozymes. In: Soltis D. E., Soltis P. S. (eds.) Isozymes in plant biology. Dioscorides Press, Portland, Oregon, pp. 5–45.Google Scholar

Copyright information

© Springer-Verlag 2000

Authors and Affiliations

  • P. L. Morrell
    • 1
  • J. M. Porter
    • 1
  • E. A. Friar
    • 1
  1. 1.Rancho Santa Ana Botanic GardenClaremontUSA

Personalised recommendations