Plant Systematics and Evolution

, Volume 203, Issue 1–2, pp 27–40

Chromosome analysis and DNA homology in threePicea species,P. mariana, P. rubens, andP. glauca (Pinaceae)

  • K. K. Nkongolo


A detailed karyotype analysis was made on the somatic complement ofPicea rubens andP. glauca. B-chromosomes were observed in someP. glauca populations. The karyotypes are generally asymmetrical with most of the chromosomes having median to median-submedian centromeres.Picea glauca chromosomes 2, 3, 7, and 8 have secondary constriction on their short arm and chromosome 10 has a secondary constriction on the long arm. Chromosome 3 was the most easily identifiable, as it has two secondary constrictions located on the short arm. InP. rubens, all the chromosomes but chromosomes 8 and 9 have one to four distinctive secondary constrictions. In general, the diagrammatic comparisons show a high degree of similarity amongP. mariana, P. rubens, andP. glauca. GenomicP. mariana probe strongly hybridized to dots of genomic DNA fromP. rubens andP. glauca indicating that there is a high sequence homology among these three species. The synchronizing agent, hydroxyurea was used at different concentrations to enhance the mitotic index of cell suspensions derived from embryogenic cultures. Hydroxyurea at 1.25 mM increased significantly the mitotic index. An increase of hydroxyurea from 1.25 mM to 5 mM and 10 mM resulted in a steady decrease of mitotic index.

Key words

Pinaceae Picea Spruce mitotic index cytotaxonomy karyotype DNA homology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bobola, M. S., Eckert, R. T., Klein, A. S., 1992: Restriction fragment variation in nuclear ribosomal DNA repeat unit within and betweenPicea rubens andPicea mariana. — Canad. J. Forest Res.22: 255–263.Google Scholar
  2. Brown, G., Amarasinghe, V., Kiss, G., Carlson, J. E., 1993: Preliminary karyotype and chromosomal localization of ribosomal DNA sites in white spruce using fluorescence in situ hybridization. — Genome36: 310–316.Google Scholar
  3. Cheliak, W. M., Klimaszewska, K., 1991: Genetic variation in somatic embryogenic response in open-pollination families of black spruce. — Theor. Appl. Genet.82: 185–190.Google Scholar
  4. Duncan, D. B., 1951: A significance test for differences between ranked treatments in analysis of variance. — Vancouver J. Sci.2: 171–189.Google Scholar
  5. Dvorak, J., Zhang, H. B., 1990: Variation in repeated nucleotide sequences sheds light on the phylogeny of the wheat B and G genomes. — Proc. Natl. Acad. Sci. USA87: 9640–9644.PubMedGoogle Scholar
  6. Gordon, A. G., 1976: The taxonomy and genetics ofPicea rubens and its relationship toPicea mariana. — Canad. J. Bot.54: 781–813.Google Scholar
  7. Hizume, M., 1988: Karyomorphological studies in the familyPinaceae. — Mem. Fac. Educ. Ehime Univ. Ser. 3, Nat. Sci.8: 1–108.Google Scholar
  8. , 1991: Variation of fluorescent chromosome bands inPicea brachytyla var.complanata collected in Yunnan, China. — Kromosomo II63–64: 2149–2158.Google Scholar
  9. Kruklis, M. V., 1971: Supplementary chromosomes in gymnosperms (inPicea obovata Lbd. as an example). — Dokl. Akad. Nauk SSSr., Ser. Biol.196: 44–47 (in Russian).Google Scholar
  10. Levan, A., Fredga, K., Sandberg, A. A., 1964: Nomenclature for centromeric position on chromosomes. — Hereditas42: 201–220.Google Scholar
  11. Litvay, J. D., Johnson, M. A., Verma, D., Einspahr, D., Wergrand, K., 1981: Conifer suspension culture medium development using analytical data from developing seeds. — Tech. Pap. Series, Judt. Paper. Chem., Appleton, WI, USA115: 1–17.Google Scholar
  12. Maniatis, T., Fitsch, E. F., Sambrook, J., 1982: Molecular cloning: a laboratory manual. — Cold Spring Harbor: Cold Spring Harbor Laboratory Press.Google Scholar
  13. Manley, S. A., 1971: Identification of red, black and hybrid spruces. — Canad. Forest. Serv. Publ.1301. — Ottawa: Canad. Dept. Fish. Forest.Google Scholar
  14. Mattews, B. F., 1993: Isolation of mitotic chromosomes from partially synchronized carrot (D. carota) cell suspension culture. — Pl. Sci. Lett.31: 165–172.Google Scholar
  15. Mergen, E., Burley, J., 1964:Abies karyotype analysis. — Silvae Genet.13: 63–68.Google Scholar
  16. Metzlafe, M., Troebner, W., Baldauf, F., Schlegel, R., Cullum, J., 1986: Wheat specific repetitive DNA sequences — construction and characterization of four different genomic clones. — Theor. Appl. Genet.72: 207–210.Google Scholar
  17. Mii, M., Praveen, K., Fowke, L. C., King, J., 1987: Isolation of chromosomes from cell suspension cultures ofVicia hajastana. — Cytologia52: 523–528.Google Scholar
  18. Moir, R. B., Fox, D. P., 1976: Supernumerary chromosomes and growth rate inPicea abies (Bong.)Carr. — Silvae Genet.25: 139–141.Google Scholar
  19. Morgenstern, E. K., 1962: Note on chromosome morphology inPicea rubens Sarg. andPicea mariana (Mill.) B.S.R. — Silvae Genet.11: 163–164.Google Scholar
  20. Mosseler, A., Egger, K. N., Hugues, G. A., 1992: Low level of genetic diversity in red pine confirmed by random amplified polymorphic DNA markers. — Canad. J. Forest Res.22: 1332–1337.Google Scholar
  21. Nkongolo, K. K., Klimaszewska, K., 1994: Karyotype analysis and optimization of mitotic index inPicea mariana (black spruce) preparations from seedling root tips and embryogenic cultures. — Heredity73: 11–17.Google Scholar
  22. , 1995: Cytological and molecular characterization ofLarix decidua, L. leptolepis andL. ×eurolepis: identification of species specific chromosomes and enhancement of mitotic index. — Theor. Appl. Genet.90: 827–834.Google Scholar
  23. Ramulu, K. S., Dijkhuis, P., Famelaer, I., Cardi, T., Verhoeven, H. A., 1993: Isolation of sub-diploid microprotoplasts for partial genome transfer in plants: enhancement of micronucleation and enrichment of microprotoplasts with one or a few chromosomes. — Planta190: 190–198.Google Scholar
  24. Saylor, L. C., 1983: Karyotype analysis of the genusPinus — subgenusStrobus. — Silvae Genet.32: 119–124.Google Scholar
  25. Schlarbaum, S. E., Tsuchiya, T., 1984: Cytotaxonomy and phylogeny in certain species ofTaxodiaceae. — Pl. Syst. Evol.147: 29–54.Google Scholar
  26. , 1983: Chromosome studies ofMetasequoia glyptostroboides andTaxodium distichum. — Bot. Gaz.114: 559–565.Google Scholar
  27. Schubert, I., Dolezel, L., Houben, A., Scherthan, H., Wanner, G., 1993: Refined examination of plant metaphase chromosome structure at different levels made feasible by new isolation methods. — Chromosoma102: 96–101.Google Scholar
  28. Schwarzacher, T., Leitch, A. R., Bennett, M. D., Heslop-Harrison, J. S., 1989: In situ localization of parental genomes in a wide hybrid. — Ann. Bot.64: 315–324.Google Scholar
  29. Simak, M., 1964: Karyotype analysis of Siberian Larch (Larix sibirica Ledb. andLarix sukaczewii Dyl.). — Stud. Forest. Suec.17: 1–15.Google Scholar
  30. Singh, R. J., 1993: Plant cytogenetics. — Boca Raton, FL: CRC Press.Google Scholar
  31. Stebbins, G. L., 1971: Chromosomal evolution in higher plants. — California: Addison-Wesley.Google Scholar
  32. Teoh, S. B., Rees, H., 1977: B-chromosomes in white spruce. — Proc. Roy. Soc. London, Ser. Biol. Sci.198: 325–344.Google Scholar
  33. Terasmaa, T., 1971: Karyotype analysis of Norway spruce,Picea abies (L.)Karst. — Silvae Genet.20: 179–182.Google Scholar
  34. Tjio, J. H., Hagberg, A., 1951: Cytological studies on some X-ray mutants of barley. — Anales Aula Dei2: 149–167.Google Scholar
  35. Wilkinson, R. C., 1970: Chemical evidence of species relationships for northeastern North American spruces. — Ph.D. Thesis, Michigan State University, East Lansing, Michigan.Google Scholar
  36. Yukong, L., Maoxue, L., 1985: Karyotype analysis of five species of genusPicea. — J. Wuhan Bot. Res.3: 203–207 (in Chinese).Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • K. K. Nkongolo
    • 1
  1. 1.Department of Biological SciencesLaurentian UniversitySudburyCanada

Personalised recommendations