Advertisement

Plant Systematics and Evolution

, Volume 213, Issue 3–4, pp 259–287 | Cite as

Simultaneous parsimony jackknife analysis of 2538rbcL DNA sequences reveals support for major clades of green plants, land plants, seed plants and flowering plants

  • Mari Källersjö
  • James S. Farris
  • Mark W. Chase
  • Birgitta Bremer
  • Michael F. Fay
  • Christopher J. Humphries
  • Gitte Petersen
  • Ole Seberg
  • Kåre Bremer
Article

Abstract

The ever-larger data matrices resulting from continuing improvements in DNA sequencing techniques require faster and more efficient methods of phylogenetic analysis. Here we explore a promising new method, parsimony jackknifing, by analyzing a matrix comprising 2538 sequences of the chloroplast generbcL. The sequences included cover a broad taxonomic range, from cyanobacteria to flowering plants. Several parsimony jackknife analyses were performed, both with and without branch-swapping and multiple random addition sequences: 1) including all positions; 2) including only first and second codon positions; 3) including only third positions; and 4) using only transversions. The best resolution was obtained using all positions. Removal of third positions or transitions led to massive loss of resolution, although using only transversions somewhat improved basal resolution. While branch-swapping improved both resolution and the support found for several groups, most of the groups could be recovered by faster simple analyses. Designed to eliminate groups poorly supported by the data, parsimony jackknifing recognizes 1400 groups on the basis of allrbcL positions. These include major taxa such as green plants, land plants, flowering plants, monocots and eudicots. We include appendices of supported angiosperm families, as well as larger groups.

Key words

Parsimony jackknifing phylogenetic analysis large data sets rbcDNA sequences green plants land plants seed plants flowering plants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert, V. A., Williams, S. E., Chase M. W., 1992: Carnivorous plants: phylogeny and structural evolution. — Science257: 1491–1495.PubMedGoogle Scholar
  2. —, 1994: Functional history andrbcL evidence for land plant phylogeny. — Ann. Missouri Bot. Gard.81: 534–567.Google Scholar
  3. Alverson, W. S., Karol, K. G., Baum, D.A., Chase, M. W., Swensen, S. M., McCourt, R., Sytsma, K. J., 1998: Circumscription of theMalvales and relationship to otherRosidae: evidence fromrbcL sequence data. — Amer. J. Bot. (in press).Google Scholar
  4. Anderberg, A. A., Ståhl, B., Källersjö, M., 1998: Phylogenetic interrelationships in thePrimulales inferred fromrbcL sequence data. — Pl. Syst. Evol.211: 93–102.Google Scholar
  5. Backlund, A., Bremer, B., 1998: Phylogeny of theAsteridae s.str. based onrbcL sequences, with particular reference to theDipsacales. — Pl. Syst. Evol.207: 225–254.Google Scholar
  6. Bayer, C., Chase, M. W., Fay, M. F., 1998:Muntingiaceae, a new family of dicotyledons with malvalean affinities. — Taxon47: 37–42.Google Scholar
  7. Bremer, B., 1996: Phylogenetic studies withinRubiaceae and relationships to other families based on molecular data. — Opera Bot. Belg.7: 33–50.Google Scholar
  8. Bremer, K., 1985: Summary of green plant phylogeny and classification. — Cladistics1: 369–385.Google Scholar
  9. —, 1988: The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. — Evolution42: 795–803.Google Scholar
  10. —, 1994: Branch support and tree stability. — Cladistics10: 295–304.Google Scholar
  11. Chase, M. W., Soltis, D. E., Olmstead, R. G., Morgan, D., Les, D. H., Mishler, B. D., Duvall, M. R., Price, R. Q., Hills, H. G., Qiu, Y.-L., Kron, K. A., Rettig, J. H., Conti, E., Palmer, J. D., Manhart, J. R., Sytsma, K. J., Michaels, H. J., Kress, W. J., Karol, K. G., Clark, W. D., Hedrén, M., Gaut, B. S., Jansen, R. K., Kim, K.-J., Wimpee, C. F., Smith, J. F., Furnier, G. R., Strauss, S. H., Xiang, Q.-Y., Plunkett, G. M., Soltis, P. S., Swensen S., Williams, S. E., Gadek, P. A., Quinn, C. J., Eguiarte, L. E., Golenberg, E., Learn, G. H., Jr.,Graham, S. W., Barrett, S. C. H., Dayanandan, S., Albert, V. A., 1993: Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid generbcL. — Ann. Missouri Bot. Gard.80: 528–580.Google Scholar
  12. —, 1995a: Molecular phylogenetics ofLilianae. — InRudall, P. J., Cribb, P. J., Cutler, D. F., Humphries, C. J., (Eds): Monocotyledons: systematics and evolution, pp. 109–137. — Richmond: Royal Botanic Gardens, Kew.Google Scholar
  13. —, 1995b: Monocot systematics: a combined analysis. — InRudall, P. J., Cribb, P. J., Cutler, D. F., Humphries, C. J., (Eds): Monocotyledons: systematics and evolution, pp. 685–730. — Richmond: Royal Botanic Gardens, Kew.Google Scholar
  14. —, 1996: New circumscriptions and a new family of asparagoid lilies: genera formerly included inAnthericaceae. — Kew Bull.51: 667–680.Google Scholar
  15. Conti, E., Litt, A., Sytsma, K. J., 1996: Circumscription ofMyrtales and their relationships to other rosids: evidence fromrbcL sequence data. — Amer. J. Bot.83: 221–233.Google Scholar
  16. Cronquist, A., 1981: An integrated system of classification of flowering plants. — New York: Columbia University Press.Google Scholar
  17. Dahlgren, R. M. T., Clifford, H. T., 1982: The monocotyledons: a comparative study. — London: Academic Press.Google Scholar
  18. —, 1985: The families of the monocotyledons. — Berlin, Heidelberg, New York: Springer.Google Scholar
  19. Doyle, J. A., Donoghue, M. J., Zimmer, E. A., 1994: Integration of morphological and ribosomal RNA data on the origin of angiosperms. — Ann. Missouri Bot. Gard.81: 419–450.Google Scholar
  20. Duvall, M. R., Clegg, M. T., Chase, M. W., Clark, W. D., Kress, W. J., Hills, H. G., Eguiarte, L. E., Smith, J. F., Gaut, B. S., Zimmer, E. A., Learn, G. H. Jr., 1993: Phylogenetic hypotheses for the monocotyledons constructed fromrbcL sequence data. — Ann. Missouri Bot. Gard.80: 607–619.Google Scholar
  21. Farris, J. S., 1988: Hennig86, version 1.5. Computer program and documentation. — Port Jefferson, New York.Google Scholar
  22. —, 1996: ‘Jac. Version 4.4.’ — Stockholm: Swedish Museum of Natural History.Google Scholar
  23. —, 1996: Parsimony jackknifing outperforms neighbor-joining. — Cladistics12: 99–124.Google Scholar
  24. -Goloboff, P., Källersjö, M., Oxelman, B., 1998: Improving the bootstrap. — Cladistics (in press).Google Scholar
  25. Fay, M. F., Swensen, S. M., Chase, M. W., 1997: Taxonomic affinities ofMedusagyne oppositifolia (Medusagynaceae). — Kew Bull.52: 111–120.Google Scholar
  26. Felsenstein, J., 1985: Confidence limits on phylogenies: an approach using the bootstrap. — Evolution39: 783–791.Google Scholar
  27. Fernando, E. S., Gadek, P. A., Crayn, D. M., Quinn, C. J., 1993: Rosid affinities ofSurianaceae: molecular evidence. — Molec. Phylogenet. Evol.2: 344–350.PubMedGoogle Scholar
  28. —, 1995:Simaroubaceae, an artificial construct: evidence fromrbcL sequence variation. — Amer. J. Bot.82: 92–103.Google Scholar
  29. Golenberg, E. M., Giannasi, D. E., Clegg, M. T., Smiley, C. J., Durbin, M., Henderson, D., Zurawski, G., 1990: Chloroplast DNA sequence from a mioceneMagnolia species. — Nature344: 656–658.PubMedGoogle Scholar
  30. Goloboff, P., 1993: Pee-Wee and NONA. Computer programs and documentation. — New York.Google Scholar
  31. Gustafsson, M. H. G., Bremer, K., 1997: The circumscription and systematic position ofCarpodetaceae. — Austral. Syst. Bot.10: 855–862.Google Scholar
  32. —, 1996: Phylogeny of the Asterales sensu lato based onrbcL sequences with particular reference to theGoodeniaceae. — Pl. Syst. Evol.199: 217–242.Google Scholar
  33. Hasebe, M., Wolf, P. G., Pryer, K. M., Ueda, K., Ito, M., Sano, R., Gastony, G. J., Yokoyama, J., Manhart, J. R., Murakami, N., Crane, E. H., Haufler, C. H., Hauk, W. D., 1995: Fern phylogeny based onrbcL nucleotide sequences. — Amer. Fern J.85: 134–181.Google Scholar
  34. Huber H., 1969: Die Samenmerkmale und Verwandtschaftsverhältnisse derLiliiflorae. — Mitt. Bot. Staatssamml. München8: 219–538.Google Scholar
  35. Jeffrey, C., 1982: Kingdoms, codes and classification. — Kew Bull.37: 403–416.Google Scholar
  36. Källersjö, M., Farris, J. S., Kluge, A. G., Bult, C., 1992: Skewness and permutation. — Cladistics8: 275–287.Google Scholar
  37. Kron, K. A., Chase, M. W., 1993: Systematics of theEricaceae, Empetraceae, Epacridaceae and related taxa based uponrbcL sequence data. — Ann. Missouri Bot. Gard.80: 735–741.Google Scholar
  38. Kumar, S., Tamura, K., Nei, M., 1993: MEGA: molecular evolutionary genetic analysis. Computer program and documentation. — University Park: Pennsylvania State University.Google Scholar
  39. Manhart, J. R., 1994: Phylogenetic analysis of green plantrbcL sequences. — Molec. Phylogenet. Evol.3: 114–127.PubMedGoogle Scholar
  40. Mattox, K. R., Stewart, K. D., 1984: Classification of the green algae: a concept based on comparative cytology. — InIrvine, D. E. G., John, D., (Eds): The systematics of green algae, pp. 29–72. — London: Academic Press.Google Scholar
  41. Mishler, B. D., Lewis, L. A., Buchheim, M. A., Renzaglia, K. S., Garbary, D. J., Delwiche, C. F., Zechman, F. W., Kantz, T. S., Chapman, R. L., 1994: Phylogenetic relationships of the ‘green algae’ and ‘bryophytes’. — Ann. Missouri Bot. Gard.81: 451–483.Google Scholar
  42. Morgan, D. R., Soltis, D. E., 1993: Phylogenetic relationships among members ofSaxifragaceae sensu lato based onrbcL sequence data. — Ann. Missouri Bot. Gard.80: 631–660.Google Scholar
  43. —, 1994: Systematic and evolutionary implications ofrbcL sequence variation inRosaceae. — Amer. J. Bot.81: 890–903.Google Scholar
  44. Morton, C. M., Chase, M. W., Karol, K. G., 1997a: Taxonomic affinities ofPhysena (Physenaceae) andAsteropeia (Asteropeiaceae). — Bot. Rev.63: 231–239.Google Scholar
  45. —, 1997b: A molecular evaluation of the monophyly of the orderEbenales based uponrbcL sequence data. — Syst. Bot.21: 567–586.Google Scholar
  46. —, 1997c: Phylogenetic relationships ofLecythidaceae: a cladistic analysis usingrbcL sequences and morphological data. — Amer. J. Bot.84: 530–540.Google Scholar
  47. Nixon, K. C., Crepet, W. L., Stevenson, D., Friis, E. M., 1994: A reevaluation of seed plant phylogeny. — Ann. Missouri Bot. Gard.81: 484–533.Google Scholar
  48. Olmstead, R. G., Reeves, P. A., 1995: Evidence for the polyphyly of theScrophulariaceae based on chloroplastrbcL andndhF sequences. — Ann. Missouri Bot. Gard.82: 176–193.Google Scholar
  49. —, 1993: A parsimony analysis of theAsteridae sensu lato based onrbcL sequences. — Ann. Missouri Bot. Gard.80: 700–722.Google Scholar
  50. Plunkett, G. M., Soltis, D. E., Soltis, P. S., 1996: Higher level relationships ofApiales (Apiaceae andAraliaceae) based on phylogenetic analysis ofrbcL sequences. — Amer. J. Bot.83: 399–415.Google Scholar
  51. Price, R. A., Palmer, J. D., 1993: Phylogenetic relationships of theGeraniaceae andGeraniales fromrbcL sequence comparisons. — Ann. Missouri Bot. Gard.80: 661–671.Google Scholar
  52. Qiu, Y.-L., Chase, M. W., Les, D. H., Parks, C. R., 1993: Molecular phylogenetics of theMagnoliidae: cladistic analyses of nucleotide sequences of the plastid generbcL. — Ann. Missouri Bot. Gard.80: 587–606.Google Scholar
  53. Rice K. A., Donoghue, M. J., Olmstead, R. G., 1997: Analyzing large date sets:rbcL 500 revisited. — Syst. Biol.46: 554–563.PubMedGoogle Scholar
  54. Ritland, K., Clegg, M. T., 1987: Evolutionary analyses of plant DNA sequences. — Amer. Naturalist130: S74-S100.Google Scholar
  55. Rodman, J. E., Price, R. A., Karol, K., Conti, E., Sytsma, K. J., Palmer, J. D., 1993: Nucleotide sequences of therbcL gene indicate monophyly of mustard oil plants. — Ann. Missouri Bot. Gard.80: 686–699.Google Scholar
  56. Rudall, P. J., Cutler, D. F., 1995:Asparagales: a reappraisal. — InRudall, P. J., Cribb, P. J., Cutler, D. F., Humphries, C. J., (Eds): Monocotyledons: systematics and evolution, pp. 157–168. — Richmond: Royal Botanic Gardens, Kew.Google Scholar
  57. —, 1996: Systematics ofXanthorrhoeaceae sensu lato: evidence for polyphyly. — Telopea6: 629–647.Google Scholar
  58. Sanderson, M. J., 1989: Confidence limits on phylogenies: the bootstrap revisited. — Cladistics5: 113–129.Google Scholar
  59. Savolainen, V., Spichiger, R., Manen, J.-F., 1997: Polyphyletism ofCelastrales deduced from a chloroplast noncoding DNA region. — Molec. Phylogenet. Evol.7: 145–157.PubMedGoogle Scholar
  60. Sheahan, M. C., Chase, M. W., 1996: A phylogenetic analysis ofZygophyllaceae R. Br. based on morphological, anatomical andrbcL sequence data. — Bot. J. Linn. Soc.122: 279–300.Google Scholar
  61. Smith, J. F., Kress, W. J., Zimmer, E. A., 1993: Phylogenetic analysis of theZingiberales based onrbcL sequences. — Ann. Missouri Bot. Gard.80: 620–630.Google Scholar
  62. Swofford, D., 1993: PAUP, phylogenetic analysis using parsimony, version 3.1.1. — Champaign, Illinois: Illinois Natural History Survey.Google Scholar
  63. Takhtajan, A. L., 1994: New families of the monocotyledons. — Bot. Zhurn.79: 65–66.Google Scholar
  64. Wolf, P. G., 1995: Phylogenetic analyses ofrbcL and nuclear ribosomal RNA gene sequences inDennstaedtiaceae. — Amer. Fern J.85: 306–327.Google Scholar
  65. Zurawski, G., Clegg, M. T., 1987: Evolution of higher-plant chloroplast DNA-coded genes: implications for structure-function and phylogenetic studies. — Ann. Rev. Pl. Physiol.38: 391–418.Google Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • Mari Källersjö
    • 1
  • James S. Farris
    • 1
  • Mark W. Chase
    • 2
  • Birgitta Bremer
    • 3
  • Michael F. Fay
    • 2
  • Christopher J. Humphries
    • 4
  • Gitte Petersen
    • 5
  • Ole Seberg
    • 5
  • Kåre Bremer
    • 3
  1. 1.Molecular Systematics LaboratorySwedish Museum of Natural HistoryStockholmSweden
  2. 2.Jodrell LaboratoryRoyal Botanic GardensKew, Richmond, SurreyUK
  3. 3.Department of Systematic BotanyUppsala UniversityUppsalaSweden
  4. 4.Department of BotanyThe Natural History MuseumLondonUK
  5. 5.Botanical InstituteUniversity of CopenhagenCopenhagen KDenmark

Personalised recommendations