Journal of Chemical Ecology

, Volume 19, Issue 4, pp 669–679 | Cite as

Pyrrolizidine alkaloids in the arctiid mothHyalurga syma

  • José Roberto Trigo
  • Ludger Witte
  • Keith S. BrownJr.
  • Thomas Hartmann
  • Lauro E. S. Barata


The arctiid mothHyalurga syma (subfamily Pericopinae) sequesters pyrrolizidine alkaloids (PAs) from its larval food plantHeliotropium transalpinum (Boraginaceae). Colorimetric quantification of total PAs in the larvae, pupae, and adults ofHyalurga revealed mean values of about 286–445μg per individual (1.4–2.6% of dry weight). The PA mixtures found in the moth and its larval food plant were evaluated by GC-MS. Food-piant leaves were found to contain the diastereoisomeric retronecine esters indicine (IIIa), intermedine (IIIb), and lycopsamine (IIIc), and the heliotridine ester rinderine (IIId) only as minor constituents, whereas 3′-acetylrinderine (IVc) (68% of total PAs) and the respective 3′-acetyl esters of indicine (IVa) and intermedine (IVb) (both 17%) were the major alkaloids. Supinine (IIa) is detectable in traces only. The PA mixtures in eggs, larvae, pupae, and imagines ofHyalurga were identical: indicine, intermedine, and lycopsamine accompanied by considerable amounts of supinine and amabiline or coromandalinine (IIb/IIc) were the major components. Only larvae were found to store small quantities of a 3′-acetyl derivative. Rinderine and its 3′-acetyl ester were never found in the insects. Low concentrations of the arctiidspecific PA callimorphine (I) were present in larvae, pupae, and imagines. The differences in the PA patterns of the insects and their larval food plant suggest thatHyalurga is capable of modifying plant-derived PAs by inversion of the 7-OH configuration (conversion of the necine base heliotridine into retronecine), and perhaps the inversion of the 3′-OH [conversion of (+)-trachelanthic acid into (−)-viridifloric acid], although the possibility of a selective sequestration of the respective retronecine esters cannot be excluded. Some trials with the orb-weaving spiderNephila clavipes, a common neotropical predator, showed that both freshly emerged and field-caught adults ofHyalurga syma are liberated unharmed by the spider. The liberation could be related to the presence of PAs in the moths.

Key Words

Pyrrolizidine alkaloids alkaloid sequestration alkaloid transformation Boraginaceae Heliotropium transalpinum, Heliotropium peruvianum Lepidoptera Arctiidae Pericopinae Hyalurga syma chemical defense Araneidae Nephila clavipes orb-weaving spider 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bingley, J.B. 1968. Solvent and temperature effects in the determination of pyrrolizidine alkaloids with 4-dimethylaminobenzaldehyde.Anal. Chem. 40:1166–1167.Google Scholar
  2. Boppré, M. 1986. Insects pharmocophagously utilizing defensive plant chemicals (pyrrolizidine alkaloids).Naturwissenschaften 73:17–26.Google Scholar
  3. Boppré, M. 1990. Lepidoptera and pyrrolizidine alkaloids. Exemplification of complexity in chemical ecology.J. Chem. Ecol. 16:165–185.Google Scholar
  4. Bowers, M.D. 1988. Chemistry and coevolution: Iridoid glycosides, plants, and herbivorous insects, pp. 133–165,in K.C. Spencer (ed.). Chemical Mediation of Coevolution. Academic Press, New York.Google Scholar
  5. Brower, L.P. 1984. Chemical defense in butterflies.Symp. R. Entomol. Soc. London 11:109–134.Google Scholar
  6. Brown, K.S. 1984. Adult-obtained pyrrolizidine alkaloids defend ithomiine butterflies against a spider predator.Nature 309:707–709.Google Scholar
  7. Brown, K.S. 1985. Chemical ecology of dehydropyrrolizidine alkaloids in adult Ithomiinae (Lepidoptera: Nymphalidae).Rev. Bras. Biol. 44:435–460.Google Scholar
  8. Brown, K.S. 1987. Chemistry at the Solanaceae/Ithomiinae interface.Ann. Mo. Bot. Gard. 74:359–397.Google Scholar
  9. Duffey, S.S. 1980. Sequestration of plant natural products by insects.Annu. Rev. Entomol. 25:447–477.Google Scholar
  10. Ehmke, A., Witte, L., Biller, A., andHartmann, T. 1990. Sequestration, N-oxidation and transformation of plant pyrrolizidine alkaloids by the arctiid mothTyria jacobaeaeL.Z. Naturforsch. 45c:1185–1192.Google Scholar
  11. Eisner, T. 1982. For love of nature: exploration and discovery at biological field stations.BioScience 32:321–326.Google Scholar
  12. Hartmann, T. 1991. Alkaloids, pp. 79– D.E. Janzen and G. Rosenthal (eds.). Herbivores: Their Interactions with Secondary Plant Metabolism, 2.ed., Academic Press, New York.Google Scholar
  13. Hartmann, T., andToppel, G. 1987. Senecionine N-oxide, the primary product of pyrrolizidine alkaloid biosynthesis in root cultures ofSenecio vulgaris.Phytochemistry 26:1639–1643.Google Scholar
  14. Hartmann, T., Biller, A., Witte, L., Ernst, L., andBoppré, M. 1990. Transformation of plant pyrrolizidine alkaloids into novel insect alkaloids by arctiid moths (Lepidoptera).Biochem. Syst. Ecol. 18:549–554.Google Scholar
  15. L'empereur, K.M., Li, Y., andStermitz, F.R. 1989. Pyrrolizidine alkaloids fromHackelia californica andGnophaela latipennis, anH. californica-hosted arctiid moth.J. Nat. Prod. 52:360–366.Google Scholar
  16. Kovats, E. 1958. Gas-chromatographische Charakterisierung organischer Verbindungen. Teil 1: Retentionsindices aliphatischer Halogenide, Alkohole, Aldehyde und Ketone.Helv. Chim. Acta 41:1915–1932.Google Scholar
  17. Mattocks, A.R. 1967a. Spectrophotometric determination of unsaturated pyrrolizidine alkaloids.Anal. Chem. 39:443–447.Google Scholar
  18. Mattocks, A.R. 1967b. Detection of pyrrolizidine alkaloids on thin-layer chromatograms.J. Chromatogr. 27:505–508.Google Scholar
  19. Mattocks, A.R. 1968. Spectrophotometric determination of pyrrolizidine alkaloids-some improvements.Anal. Chem. 40:1749–1750.Google Scholar
  20. Mattocks, A.R., Schoental, R., Crowley, H.C., andCulvenor, C.C.J. 1961. Indicine: The major alkaloid ofHeliotropium indicumL.J. Chem. Soc. 1961:5400–5403.Google Scholar
  21. Mohanraj, S., Subramanian, P.S., andHerz, W. 1982. Minor alkaloids ofHeliotroium curassavicum.Phytochemistry 21:1775–1779.Google Scholar
  22. Nickisch-Rosenegk, E., Schneider, D., andWink, M. 1990. Time course of pyrrolizidine alkaloid processing in the alkaloid exploiting arctiid moth,Creatonotos transiens.Z. Naturforsch. 45c:881–894.Google Scholar
  23. Pedersen, E., andLarsen, E. 1970. Mass spectrometry of some pyrrolizidine alkaloids.Org. Mass Spectrom. 4:249–256.Google Scholar
  24. Roitman, J.N. 1983. The pyrrolizidine alkaloids ofAmsinckia menziessi.Aust. J. Chem. 36:769–778.Google Scholar
  25. Robins, D.J. 1989. Biosynthesis of pyrrolizidine alkaloids.Chem. Soc. Rev. 18:375–408.Google Scholar
  26. Trigo, J.R. 1988. Ecologia química na interaçāo Ithomiinae (Lepidoptera: Nymphalidae)/Echitoideae (Angiospermae: Apocynaceae). MSc thesis. Instituto de Biologia, UNICAMP, Campinas, São Paulo, Brazil, 196 pp.Google Scholar
  27. Vasconcellos-Neto, J., andLewinsohn, T. 1984. Discrimination and release of unpalatable butterflies byNephila clavipes, a neotropical orb-weaving spider.Ecol. Entomol. 9:337–344.Google Scholar
  28. Vianna, M.J.B. 1972. Contribuição à biologia deNephila clavipes L. (Araneae, Araneidae). PhD thesis. Faculdade de Ciências Médicas e Biológicas de Botucatu, Sāo Paulo, Brazil, 154 pp.Google Scholar
  29. Wink, M., Schneider, D., andWitte, L. 1988. Biosynthesis of pyrrolizidine alkaloid-derived pheromones in the arctiid moth,Creatonotos transiens: Stereochemical conversion of heliotrine.Z. Naturforsch. 43c:737–741.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • José Roberto Trigo
    • 1
    • 2
    • 3
  • Ludger Witte
    • 2
  • Keith S. BrownJr.
    • 1
  • Thomas Hartmann
    • 2
  • Lauro E. S. Barata
    • 3
  1. 1.Laboratório de Ecologia Química Departamento de ZoologiaInstituto de Biologia, UNICAMPCampinas, S.P.Brazil
  2. 2.Institut für Pharmazeutische BiologieTechnische UniversitätBraunschweigGermany
  3. 3.Instituto de QuímicaUNICAMPCampinas, S.P.Brazil

Personalised recommendations