Journal of Chemical Ecology

, Volume 19, Issue 7, pp 1521–1552 | Cite as

Phenolics in ecological interactions: The importance of oxidation

  • Heidi M. Appel


The ecological activities of plant phenolics are diverse and highly variable. Although some variation is attributable to differences in concentration, structure, and evolutionary history of association with target organisms, much of it is unexplained, making it difficult to predict when and where phenolics will be active. I suggest that our understanding is limited by a failure to appreciate the importance of oxidative activation and the conditions that influence it. I summarize examples of oxidative activation of phenolics in ecological interactions, and argue that physicochemical conditions of the environment that control phenolic oxidation generate variation in ecological activity. Finally, I suggest that measurements of oxidative conditions can improve our predictions of phenolic activity and that experiments must be designed with conditions appropriate to the biochemical mode of phenolic action.

Key Words

Phenolics tannins plant defense plant-animal interactions plant-herbivore interactions plant-microbe interactions phenol oxidase peroxidase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adam, A., Ersek, T., Barna, B., andKiraly, Z. 1990. Role of oxidative stress in plants on the development of necrosis induced by pathogens, pp. 1–18,in B. Matkovics, L. Karmazsin and H. Kalasz (eds.). Radicals, Ions and Tissue Damage. Akademiai Kiado, Budapest.Google Scholar
  2. Aiken, G.R., McKnight, D.M., andWershaw, R.L. (eds.) 1985. Humic substances.In Soil, Sediment, and Water. Geochemistry, Isolation, and Characterization. Wiley-Interscience, NewYork.Google Scholar
  3. Alscher, R.G. 1989. Biosynthesis and antioxidant function of glutathione in plants.Physiol. Plant. 77:457–464.Google Scholar
  4. Anderson, A.J. 1991. Phytoalexins and plant resistance, pp. 569–594,in R.P. Sharma and D.K. Salunkhe (eds.). Mycotoxins and Phytoalexins. CRC Press, Boca Raton, Florida.Google Scholar
  5. Anderson, J.V., Chevone, B.I., andHess, J.L. 1992. Seasonal variation in the antioxidant system of eastern white pine needles.Plant Physiol. 98:501–508.Google Scholar
  6. Anderson, N.H., andCargill, A.S. 1986. Nutritional ecology of aquatic detritivorous insects, pp. 903–924,in F. Slansky, Jr. and J.G. Rodriguez (eds.). Nutritional Ecology of Insects, Mites, Spiders, and Related Invertebrates. John Wiley & Sons, New York.Google Scholar
  7. Appel, H.M. 1993. The herbivore gut lumen: physicochemical conditions and their impact on plant nutrients, allelochemicals, and insect pathogens,in E.A. Bernays (ed.). Insect-Plant Interactions, Vol. IV. CRC Press, Boca Raton, Florida. In press.Google Scholar
  8. Appel, H.M., andMartin, M.M. 1990. Gut redox conditions in herbivorous lepidopteran larvae.J. Chem. Ecol. 16:3277–3290.Google Scholar
  9. Appel, H.M., andSchultz, J.C. 1992. Activity of phenolics in insects may require oxidation, pp. 609–620,in R.W. Hemingway (ed.). Plant Polyphenols: Biogenesis, Chemical Properties, and Significance. Plenum Press, New York.Google Scholar
  10. Austin, P.J., Suchar, L.A., Robbins, C.T., andHagerman, A.E. 1989. Tannin-binding proteins in saliva of deer and their absence in saliva of sheep and cattle.J. Chem. Ecol. 15:1335–1347.Google Scholar
  11. Baldwin, I.T., Olson, R.K., andReiners, W.A. 1983. Protein binding phenolics and the inhibition of nitrification in subalpine balsam fir soils.Soil Biol. Biochem 15:419–424.Google Scholar
  12. Barbeau, W.E., andKinsella, J.E. 1985. Effects of free and bound chlorogenic acid on the in vitro digestibility of ribulose bisphosphate carboxylase from spinach.J. Food Sci. 50:1083–1087.Google Scholar
  13. Barlocher, F. 1983. Seasonal variation of standing crop and digestibility of CPOM in a Swiss Jura stream.Ecology 64:1266–1272.Google Scholar
  14. Barry, T.N., andManley, T.R. 1986. Interrelationships between the concentrations of total condensed tannin, free condensed tannin and lignin inLotus sp. and their possible consequences in ruminant nutrition.J. Sci. Food Agric. 37:248–254.Google Scholar
  15. Bartlett, R.J. 1986. Soil redox behavior, pp. 179–207,in D.L. Sparks (ed.). Soil Physical Chemistry. CRC Press, Boca Raton, Florida.Google Scholar
  16. Bashan, Y., Okon, Y., andHenis, Y. 1987. Peroxidase, polyphenoloxidase, and phenols in relation to resistance againstPseudomonas syringae pv.tomato in tomato plants.Can. J. Bot. 65:366–372.Google Scholar
  17. Bassuk, N.L., Hunter, L.D., andHoward, B.H. 1981. The apparent involvement of polyphenol oxidase and phloridzin in the production of apple rooting cofactors.J. Hortic. Sci. 56:313–322.Google Scholar
  18. Bate-Smith, E.C. 1977. Astringent tannins ofAcer species.Phytochemistry 16:1421–1426.Google Scholar
  19. Bendich, A. 1989. Antioxidant nutrients and immune functions-Introduction, pp. 1–12,in A. Bendich, M. Phillips, and R.P. Tengerdy (eds.). Antioxidant Nutrients and Immune Functions. Plenum Press, New York.Google Scholar
  20. Benezra, C. 1988. Plants causing adverse skin reactions, pp. 395–400,in V. Cody, E. Middleton, Jr., J.B. Harborne, and A. Beretz (eds.). Plant Flavonoids in Biology and Medicine II: Bio-chemical, Cellular, and Medicinal Properties. Alan R. Liss, New York.Google Scholar
  21. Berenbaum, M. 1984. Effects of tannins on growth and digestion in two species of papilionids.Entomol. Exp. Appl. 34:245–250.Google Scholar
  22. Bernays, E.A. 1978. Tannins: An alternative viewpoint.Entomol. Exp. Appl. 34:245–250.Google Scholar
  23. Bernays, E.A. 1981. Plant tannins and insect herbivores: An appraisal.Ecol. Entomol. 6:353–360.Google Scholar
  24. Bernays, E.A., andChamberlain, D.J. 1980. A study of tolerance of ingested tannin inSchistocerca gregaria.J. Insect Physiol. 26:415–420.Google Scholar
  25. Bernays, E.A., Chamberlain, D.J., andMcCarthy, P. 1980. The differential effects of ingested tannic acid on different species of Acridoidea.Entomol. Exp. Appl. 28:158–166.Google Scholar
  26. Bernays, E.A., Chamberlain, D.J., andWoodhead, S. 1983. Phenols as nutrient for a phytophagous insectAnacridium melanorhodon.J. Insect Physiol. 29:535–539.Google Scholar
  27. Bernays, E.A., Cooper Driver, G., andBilgener, M. 1989. Herbivores and plant tannins.Adv. Ecol. Res. 19:263–302.Google Scholar
  28. Blakeman, J.P., andAtkinson, P. 1981. Antimicrobial substances associated with the aerial surfaces of plants, pp. 245–263,in J.P. Blakeman (ed.). Microbial Ecology of the Phylloplane. Academic Press, New York.Google Scholar
  29. Bloem, K.A., andDuffey, S.S. 1990. Interactive effect of protein and rutin on larvalHeliothis zea and the endoparasitoidHyposoter exiguae.Entomol. Exp. Appl. 54:149–160.Google Scholar
  30. Blum, M.S. 1981. Chemical Defenses of Arthropods. Academic Press, New York.Google Scholar
  31. Blum, U., Wentworth, T.R., Klein, K., Worsham, A.D., King, L.D., Gerig, T.M., andLyu, S.W. 1991. Phenolic acid content of soils from wheat-no till, wheat-conventional till, and fallow-conventional till soybean cropping systems.J. Chem. Ecol. 17:1045–1068.Google Scholar
  32. Boettcher, A., andTargett, N. 1992. The role of polyphenolic molecular size in the reduction of assimilation efficiency in the herbivorous marine fishXiphister mucosus.Ecology 74:891–903.Google Scholar
  33. Bollag, J. 1991. Enzymatic binding of pesticide degradation products to soil organic matter and their possible release, pp. 122–132,in L. Somasundaram and J.R. Coats, (eds.). Pesticide Transformation Products. American Chemical Society Symposium Series No. 459, Washington, D.C.Google Scholar
  34. Booth, A.N., Mashi, M.S., Robbins, D.J., Emerson, O.H., Jones, F.T., andDeeds, F. 1959. The metabolic fate of gallic acid and related compounds.J. Biol. Chem. 234:3014–3016.Google Scholar
  35. Bourchier, R.S. 1991. Growth and development ofCompsilura concinnata (Meigan) (Diptera: Tachinidae) parasitizing gypsy moth larvae feeding on tannin diets.Can. Entomol. 123:1047–1055.Google Scholar
  36. Bryant, J.P., Kuropat, P.J., Reichardt, P.B., andClausen, T.P. 1991. Controls over the allocation of resources by woody plants to chemical antiherbivore defense, pp. 83–102,in R.I. Palo and C.T. Robbins (eds.). Plant Defenses Against Mammalian Herbivory. CRC Press, Boca Raton, Florida.Google Scholar
  37. Byrd, R.J.W., Fielding, A.H., andWilliams, A.H. 1960. The role of oxidized polyphenols in the varietal resistance of apples to brown rot, pp. 95–99,in J.B. Pridham (ed.). Phenolics in Plants in Health and Disease. Pergamon Press, London.Google Scholar
  38. Cameron, G.N., andLaPoint, T.W. 1978. Effects of tannins on the decomposition of Chinese tallow leaves by terrestrial and aquatic invertebrates.Oecologia 32:349–366.Google Scholar
  39. Cherney, J.H., Cherney, D.J.R., Sollenberger, L.E., Patterson, J.A., andWood, K.V. 1990. Identification of 5-O-caffeoylquinic acid in limpograss and its influence on fiber digestion.J. Sci. Food Agric. 38:2140–2143.Google Scholar
  40. Chiou, C.T. 1990. Roles of organic matter, minerals, and moisture in sorption of nonionic compounds and pesticides in soil, pp. 111–160,in P. MacCarthy, C.E. Clapp, R.L. Malcolm and P.R. Bloom (eds.). Humic Substances in Soil and Crop Sciences: Selected Readings. American Society of Agronomists, Inc. and Soil Science Society of America, Inc., Madison, Wisconsin.Google Scholar
  41. Cilliers, J.J.L., Singleton, V.L., andLamuela-Raventos, R.M. 1990. Total polyphenols in apples and ciders; correlation with chlorogenic acid.J. Food Sci. 55:1458–1459.Google Scholar
  42. Claus, H., andFilip, Z. 1990. Effects of clays and other solids on the activity of phenoloxidases produced by some fungi and actinomycetes.Soil Biol. Biochem. 22:483–488.Google Scholar
  43. Clausen, T.P., Provenza, F.D., Burritt, E.A., Reichardt, P.B., andBryant, J.P. 1990. Ecological implications of condensed tannin structure: a case study.J. Chem. Ecol. 16:2381–2392.Google Scholar
  44. Cole, R.A., Phelps, K., Ellis, P.R., andHardman, J.A. 1987. The effects of time of sowing and harvest on carrot biochemistry and the resistance of carrots to carrot fly.Ann. Appl. Biol. 110:135–143.Google Scholar
  45. Cole, R.A., Phelps, K., Ellis, P.R., Hardman, J.A., andRollason, S.A. 1988. Further studies relating chlorogenic acid concentration in carrots to carrot fly damage.Ann. Appl. Biol. 112:13–18.Google Scholar
  46. Coley, P.D., Bryant, J.P., andChapin, F.S., III. 1985. Resource availability and plant antiherbivore defense.Science 230:895–899.Google Scholar
  47. Cooper, S.M., Owen-Smith, N., andBryant, J.P. 1988. Foliage acceptability to browsing ruminants in relation to seasonal changes in the leaf chemistry of woody plants in a South African savanna.Oecologia 75:336–342.Google Scholar
  48. Cork, S.J., andFoley, W.J. 1991. Digestive and metabolic strategies of arboreal mammalian folivores in relation to chemical defense in temperate and tropical forests, pp. 133–166,in R.T. Palo and C.T. Robbins (eds.). Plant Defenses Against Mammalian Herbivory. CRC Press, Boca Raton, Florida.Google Scholar
  49. Crowson, R.A. 1981. The Biology of the Coleoptera. Academic Press, New York.Google Scholar
  50. Dadd, R.H. 1975. Alkalinity within the midgut of mosquito larvae with alkaline-active digestive enzymes.J. Insect Physiol. 21:1847–1853.Google Scholar
  51. Dao, T.H. 1987. Sorption and mineralization of plant phenolic acids in soil, pp. 358–370,in G.R. Waller (ed.). Allelochemicals: Role in Agriculture and Forestry. American Chemical Society Symposium Series No. 330, Washington, D.C.Google Scholar
  52. Daub, M.E., andHangarter, R.P. 1983. Production of singlet oxygen and Superoxide by the fungal toxin, cercosporin.Plant Physiol. 73:855–857.Google Scholar
  53. Davis, S., andBurns, R.G. 1990. Decolorization of phenolic effluents by soluble and immobilized phenol oxidases.Appl. Microbiol. Biotechnol. 32:721–726.Google Scholar
  54. Del Grosso, E., Grazia, S., andMaraldi, A.C. 1987. Peroxidase activity inPhaseolus vulgaris seedling tissues and callus cultures: A comparison of genotypes and developmental stages.Environ. Exp. Bot. 27:387–394.Google Scholar
  55. Del Moral, R. 1972. On the variability of chlorogenic acid concentration.Oecologia 9:289–300.Google Scholar
  56. Dennisov, E., andKhudyakov, I.V. 1987. Mechanisms of action and reactivities of the free radicals of inhibitors.Chem. Rev. 87:1313–1357.Google Scholar
  57. De Veau, E.J.I., andSchultz, I.C. 1992. Reassessment of the interaction between gut detergents and phenolics in Lepidoptera and significance for gypsy moth larvae.J. Chem. Ecol. 18:1437–1453.Google Scholar
  58. Dix, N.J. 1979. Inhibition of fungi by gallic acid in relation to growth on leaves and litter.Trans. Br. Mycol. Soc. 73:32–336.Google Scholar
  59. Doke, N., Miura, T., Chai, H., andKawakita, K. 1991. Involvement of active oxygen in induction of plant defense response against infection and injury, pp. 84–96,in E. Pell and K. Steffen (eds.). Active Oxygen/Oxidative Stress and Plant Metabolism. American Society of Plant Physiology, Penn State University, University Park, Pennsylvania.Google Scholar
  60. Driscoll, C.T., Van Breemen, N., andMulder, J. 1985. Aluminum chemistry in a forested spodosol.Soil Sci. Soc. Am. J. 49:437–444.Google Scholar
  61. Duffey., S.S., andFelton, G.W. 1989. Plant enzymes in resistance to insects, pp. 166–197,in J.R. Whitaker and P.E. Sonnett (eds.). Biocatalysis in Agricultural Biotechnology. American Chemical Society Symposium Series, Washington, D.C.Google Scholar
  62. Duke, J.A., andAtchley, A.A. 1986. Handbook of Proximate Analysis Tables of Higher Plants. CRC Press, Boca Raton, Florida.Google Scholar
  63. Ebbing, D.D. 1987. General Chemistry. Houghton-Mifflin, New York.Google Scholar
  64. Einhellig, F.A. 1986. Mechanisms and modes of action of allelochemicals, pp. 171–186,in A.R. Putnam and C. Tang (eds.). The Science of Allelopathy. John Wiley & Sons, New York.Google Scholar
  65. Einhellig, F.A., andSouza, I.F. 1992. Phytotoxicity of sorgoleone found in grain sorghum root exudates.J. Chem. Ecol. 18:1–11.Google Scholar
  66. Elliger, C.A., Chan, B.C., andWaiss, A.C. 1981. Flavonoids as larval growth inhibitors: Structural factors governing toxicity.Naturwissenschaften 67:358–360.Google Scholar
  67. Elstner, E.F., Konze, J.R., Selman, B.R., andStoffer, C. 1976. Ethylene formation in sugar beet leaves.Plant Physiol. 58:163–168.Google Scholar
  68. Evans, D.H. 1978. Carbonyl compounds, pp. 3–259,in A.J. Bard, (ed.). Encyclopedia of Electrochemistry of the Elements, Vol. 12. Marcel Dekker, New York.Google Scholar
  69. Fate, G., Chang, M., andLynn, D.G. 1990. Control of germination inStriga asiatica: Chemistry of spatial definition.Plant Physiol. 93:201–207.Google Scholar
  70. Feeny, P. 1968. Effect of oak leaf tannins on larval growth of the winter mothOperophtera brumata.J. Insect Physiol. 14:805–817.Google Scholar
  71. Feeny, P. 1969. Inhibitory effect of oak leaf tannins on the hydrolysis of proteins by trypsin.Phytochemistry 8:2119–2126.Google Scholar
  72. Feeny, P. 1970. Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars.Ecology 51:565–581.Google Scholar
  73. Feeny, P. 1976. Plant apparancy and chemical defence, pp. 1–40,in J.W. Wallace and R.L. Mansell (eds.). Biochemical Interactions Between Plants and Insects. Plenum Press, New York.Google Scholar
  74. Felton, G.W., andDuffey, S.S. 1990. Inactivation of baculovirus by quinones formed in insect-damaged plant tissues.J. Chem. Ecol. 16:1221–1236.Google Scholar
  75. Felton, G.W., andDuffey, S.S. 1991a. Enzymatic antinutritive defenses of the tomato plant against insects, pp. 166–197,in P. Hedin (ed.). Naturally Occurring Pest Bioregulators. American Chemical Society Symposium Series 449, Washington, D.C.Google Scholar
  76. Felton, G.W., andDuffey, S.S. 1991b. Reassessment of the role of gut alkalinity and detergency in insect herbivory.J. Chem. Ecol. 17:1821–1836.Google Scholar
  77. Felton, G.W., andDuffey, S.S. 1992. Ascorbate oxidation reduction inHelicoverpa zea as a scavenging system against dietary oxidants.Arch. Insect Biochem. Physiol. 19:27–37.Google Scholar
  78. Felton, G.W., Duffey, S.S., Vail, P.V., Kaya, H.K., andManning, J. 1987. Interaction of nuclear polyhedrosis virus with catechols: potential incompatibility for host-plant resistance against noctuid larvae.J. Chem. Ecol. 13:947–957.Google Scholar
  79. Felton, G.W., Donato, K., Del Vecchio, R.J., andDuffey, S.S. 1989. Activation of plant foliar oxidases by insect feeding reduces nutritive quality of foliage for noctuid herbivores.J. Chem. Ecol. 12:2667–2694.Google Scholar
  80. Flaig, W. 1988. Generation of model chemical precursors, pp. 75–92,in F.H. Frimmel and R.F. Christman (eds.). Humic Substances and Their Role in the Environment. Wiley, Chichester.Google Scholar
  81. Fox, R.H., Meyers, R.J.K., andValus, I. 1990. The nitrogen mineralization rate of legume residues in soil as influenced by their polyphenol, ligin, and nitrogen contents.Plant Soil 129:251–259.Google Scholar
  82. Freda, J., Cavdek, J., andMcDonald, D.G. 1990. Role of organic complexation in the toxicity of aluminum toRana pipiens embryos andBufo americanus tadpoles.Can. J. Fish. Aquat. Sci. 47:217–224.Google Scholar
  83. Friend, J. 1979. Phenolic substances and plant disease, pp. 557–588,in T. Swain, J.B. Harborne, and C.F. Van Sumere (eds.). Biochemistry of Plant Phenolics. Plenum Press, New York.Google Scholar
  84. Friend, J. 1981. Plant phenolics, lignification and plant disease.Prog. Phytochem. 7:197–261.Google Scholar
  85. Fujita, S., andTono, T. 1988. Purification and some properties of polyphenoloxidase in eggplant (Solanum melongena).J. Sci. Food Agric. 46:115–123.Google Scholar
  86. Gentile, I.A., Ferraris, L., andMatta, A. 1988. Variations of phenoloxidase activities as a consequence of stresses that induce resistance toFusarium wilt of tomato.J. Phytopathol. 122:45–53.Google Scholar
  87. Gillman, G.P. 1985. Influence of organic matter and phosphate content on the point of zero charge of variable charge components in oxidic soils.Aust. J. Soil Res. 23:643–646.Google Scholar
  88. Graham, M.Y., andGraham, T.L. 1991. Rapid accumulation of anionic peroxidases and phenolic polymers in soybean cotyledon tissues following treatment withPhytophthora megasperma f. sp.Glycinea wall glucan.Plant Physiol. 97:1445–1455.Google Scholar
  89. Griffiths, D.W., Bain, H., andDale, M.F.B. 1992. Development of a rapid colorimetric method for the determination of chlorogenic acid in freeze-fried potato tubers.J. Sci. Food Agric. 58:41–48.Google Scholar
  90. Hagerman, A.E., andButler, L.G. 1991. Tannins and lignins, pp. 355–388,in G.A. Rosenthaland M.R. Berenbaum (eds.). Herbivores: Their Interactions with Secondary Plant Metabolites, 2nd ed., Vol. 1: The Chemical Participants. Academic Press, San Diego, California.Google Scholar
  91. Halliwell, B., andGutteridge, J.M.C. (eds.) 1989. Free Radicals in Biology and Medicine, 2nd ed. Oxford University Press, New York.Google Scholar
  92. Harborne, J.B. 1988. Flavonoids in the environment: structure-activity relationships, pp. 17–27,in V. Cody, E. Middleton, Jr., J.B. Harborne, and A. Beretz (eds.). Plant Flavonoids in Biology and Medicine II: Biochemical, Cellular, and Medicinal Properties. Alan R. Liss, NewYork.Google Scholar
  93. Harborne, J.B. 1991a. Flavonoid pigments, pp. 389–429,in G.A. Rosenthal and M.R. Berenbaum (eds.). Herbivores: Their Interactions with Secondary Plant Metabolites, 2nd ed., Vol. 1: The Chemical Participants. Academic Press, San Diego, California.Google Scholar
  94. Harborne, J.B. 1991b. The chemical basis of plant defense, pp. 45–59,in R.T. Palo and C.T. Robbins (eds.). Plant Defenses against Mammalian Herbivory. CRC Press, Boca Raton, Florida.Google Scholar
  95. Harrison, A.F. 1971. The inhibitory effect of oak leaf litter tannins on the growth of fungi, in relation to litter decomposition.Soil Biol. Biochem. 3:167–172.Google Scholar
  96. Hartenstein, R. 1982. Soil macroinvertebrates, aldehyde oxidase, catalase, cellulase and peroxidase.Soil Biol. Biochem. 4:387–391.Google Scholar
  97. Haslam, E. 1989. Plant polyphenols: Vegetable tannins revisited. Cambridge University Press, Cambridge, U.K.Google Scholar
  98. Hay, M.E., andFenical, W. 1988. Marine plant-herbivore interactions: The ecology of chemical defense.Annu. Rev. Ecol. Syst. 19:111–145.Google Scholar
  99. Hayes, M.H.B, (ed.) 1989. Humic Substances II, in Search of Structure. John Wiley & Sons, New York.Google Scholar
  100. Heal, O.W., andDighton, J. 1986. Nutrient cycling and decomposition in natural terrestrial ecosystems, pp. 14–73,in Microfloral and Faunal Interactions in Natural and Agro-ecosystems. Martinus Nijhoff/Dr. W. Junk, Dordrecht.Google Scholar
  101. Hofmann, R.R. 1989. Evolutionary steps of ecophysiological adaptation and diversification of ruminants: A comparative view of their digestive system.Oecologia 78:443–457.Google Scholar
  102. Horn, M.H. 1989. Biology of marine herbivorous fishes.Oceanogr. Mar. Biol. Annu. Rev. 27:167–272.Google Scholar
  103. Hue, N.V., Craddock, G.R., andAdams, F. 1986. Effect of organic acids on aluminum toxicity in subsoils.Soil Sci. Soc. Am. J. 50:28–34.Google Scholar
  104. Iason, G.R., andPalo, R.T. 1991. Effects of birch phenolics on a grazing and a browsing mammal: A comparison of hares.J. Chem. Ecol. 17:1733–1743.Google Scholar
  105. Illman, B.L. 1991. Oxidative degradation of wood by brown-rot fungi, pp. 97–106,in E. Pell and K. Steffen (eds.). Active Oxygen/Oxidative Stress and Plant Metabolism. American Society of Plant Physiology, Penn State University, University Park, Pennsylvania.Google Scholar
  106. Isman, M.B., andDuffey, S.S. 1982. Toxicity of tomato phenolic compounds to the fruitworm,Heliothis zea.Entomol. Exp. Appl. 31:370–376.Google Scholar
  107. Jakubas, W.J., andGullion, G.W. 1990. Coniferyl benzoate in quaking aspen. A ruffed grouse feeding deterrent.J. Chem. Ecol. 16:1077–1087.Google Scholar
  108. Jakubas, W.J., Gullion, G.W., andClausen, T.P. 1989. Ruffed grouse feeding behavior and its relationship to secondary metabolites of quaking aspen flower buds.J. Chem. Ecol. 15:1899–1917.Google Scholar
  109. Janovitz-Klapp, A., Richard, F., andNicolas, J. 1989. Polyphenoloxidase from apple, partial purification and some properties.Phytochemistry 28:2903–2907.Google Scholar
  110. Jones, C.G., Hess, T.A., Whitman, D.W., Silk, P.J., andBlum, M.S. 1986. Idiosyncratic variation in chemical defenses among individual generalist grasshoppers.J. Chem. Ecol. 12:749–761.Google Scholar
  111. Jones, K.C., andKlocke, J.A. 1987. Aphid feeding deterrency of ellagitannins, their phenolic hydrolysis products and related phenolic derivatives.Entomol. Exp. Appl. 44:229–232.Google Scholar
  112. Kafkafi, U., Bar-Yosef, B., Rosenberg, R., andSposito, G. 1988. Phosphorous adsorption by kaolinite and montmorillonite: II. Organic anion competition.Soil. Sci. Soc. Am. J. 52:1585–1589.Google Scholar
  113. Kalish, R.S., andJohnson, K.L. 1990. Enrichment and function of urushiol (poison ivy) -specific T lymphocytes in lesions of allergic contact dermatitis to urushiol.J. Immunol. 145:3706–3713.Google Scholar
  114. Kalisz, P.J., andStone, E.L. 1980. Cation exchange capacity of acid forest humus layers.Soil Sci. Soc. Am. J. 44:407–413.Google Scholar
  115. Karowe, D.N. 1989. Differential effect of tannic acid on two tree-feeding Lepidoptera: Implications for theories of plant anti-herbivory chemistry.Oecologia 80:507–512.Google Scholar
  116. Keating, S.T., Yendol, W.G., andSchultz, J.C. 1988. Relationship between susceptibility of gypsy moth larvae (Lepidoptera: Lymantriidae) to a baculovirus and host plant foliage constituents.Environ. Entomol. 17:952–958.Google Scholar
  117. Koike, S., andPatterson, B.D. 1988. Diurnal variation of glutathione levels in tomato seedlings.Hortic. Sci. 23:713–714.Google Scholar
  118. Kojima, M., andConn, E.E. 1982. Tissue distributions of chlorogenic acid and of enzymes involved in its metabolism in leaves ofSorghum bicolor.Plant Physiol. 70:922–925.Google Scholar
  119. Kosuge, T. 1969. The role of phenolics in host response to infection.Annu. Rev. Phytopathol. 7:195–222.Google Scholar
  120. Kukor, J.J., andMartin, M.M. 1986. The effect of acquired enzymes on assimilation efficiency in the common woodlouseTracheoniscus rathkei.Oecologia (Berlin) 69:360–366.Google Scholar
  121. Kumar, A., Jadhav, S.J., andSalunkhe, D.K. 1991.Solarium phytoalexins, pp. 511–558,in R.P. Sharma and D.K. Salunkhe (eds.). Mycotoxins and Phytoalexins. CRC Press, Boca Raton, Florida.Google Scholar
  122. Kuiters, A.T., andSarink, H.M. 1986. Leaching of phenolic compounds from leaf and needle litter of several deciduous and coniferous trees.Soil Biol. Biochem. 18:475–480.Google Scholar
  123. Lacey, L.A., andFederici, B.A. 1979. Pathogenesis and midgut histopathology ofBacillus thuringiensis inSimulium vitattum (Diptera: Simulidae).J. Invert. Pathol. 33:171–182.Google Scholar
  124. Lanker, T., King, T.G., Arnold, S.W., andFlurkey, W.H. 1987. Active, inactive and in vitro synthesized forms of polyphenoloxidase during leaf development.Physiol. Plant. 69:323–329.Google Scholar
  125. Larson, R.A. 1988. The antioxidants of higher plants.Phytochemistry 27:969–978.Google Scholar
  126. Lee, C.Y., Kagan, V., Jaworski, A.W., andBrown, S.K. 1990. Enzymatic browning in relation to phenolic compounds and polyphenoloxidase activity among various peach cultivars.J. Sci. Food Agric. 38:99–101.Google Scholar
  127. Lee, K. 1991. Glutathione S-transferase activities in phytophagous insects: Induction and inhibition by plant phototoxins and phenols.Insect Biochem. 21:353–361.Google Scholar
  128. Lee, K.E. 1985. Earthworms: Their Ecology and Relationships with Soils and Land Use. Academic Press, Sydney.Google Scholar
  129. Lindroth, R.L. 1991. Differential toxicity of plant allelochemicals to insects: roles of enzymatic detoxification systems, pp. 2–33,in E.A. Bernays (ed.). Insect-Plant Interactions, Vol. III. CRC Press, Boca Raton, Florida.Google Scholar
  130. Lindroth, R.L., Scriber, J.M., andHsai, M.T.S. 1988. Chemical ecology of the tiger swallowtail: Mediation of host use by phenolic glycosides.Ecology 69:814–822.Google Scholar
  131. Lindroth, R.L., Kinney, K.K., andPlatz, C.L. 1992. Responses of forest trees to elevated atmospheric CO2: Productivity, phytochemistry, and insect performance.Ecology. 74:163–777.Google Scholar
  132. Lodge, D.M. 1991. Herbivory on freshwater macrophytes.Aquat. Bot. 41:195–224.Google Scholar
  133. Lopez-Hernandez, D., Flores, D., Siegert, G., andRodriguez, J.V. 1979. The effect of some organic anions on phosphate removal from acid and calcareous soils.Soil Sci. 128:321–326.Google Scholar
  134. Ludlum, C.T., Felton, G.W., andDuffey, S.S. 1991. Plant defenses: chlorogenic acid and polyphenol oxidase enhance toxicity ofBacillus thuringiensis subsp.Kurstaki toHeliothis zea.J. Chem. Ecol. 17:217–237.Google Scholar
  135. Lynn, D.G., andChang, M. 1990. Phenolic signals in cohabitation: Implications for plant development.Annu. Rev. Plant Physiol. 41:497–526.Google Scholar
  136. Martin, J.S., Martin, M.M., andBernays, E.A. 1987. Failure of tannic acid to inhibit digestion or reduce digestibility of plant protein in gut fluids of insect herbivores: Implication for theories of plant defense.J. Chem. Ecol. 13:605–621.Google Scholar
  137. Martin, M.M. 1987. Invertebrate-Microbial Interactions. Cornell University Press, Ithaca, NewYork.Google Scholar
  138. Martin, M.M., andMartin, J.S. 1984. Surfactants: Their role in preventing the precipitation of proteins in insect guts.Oecologia 61:342–345.Google Scholar
  139. Martin, M.M., Martin, J.S., Kukor, J.J., andMerritt, R.W. 1980. The digestion of protein and carbohydrate by the stream detritivoreTipula abdominalis (Diptera, Tipulidae).Oecologia 46:360–364.Google Scholar
  140. Martin, M.M., Martin, J.S., Kukor, J.J., andMerritt, R.W. 1981a. The digestive enzymes of detritus-feeding stonefly nymphs (Plecoptera, Pteronarcyidae).Can. J. Zool. 59:1947–1951.Google Scholar
  141. Martin, M.M., Kukor, J.J., Martin, J.S., Lawson, D.L., andMerritt, R.W. 1981b. Digestive enzymes of larvae of three species of caddisflies (Trichoptera).Insect Biochem. 11:501–505.Google Scholar
  142. Mayer, A.M. 1987. Polyphenol oxidases in plants-recent progress.Phytochemistry 26:11–20.Google Scholar
  143. Matern, U., andKneusel, R.E. 1988. Phenolic compounds in plant disease resistance.Phytoparasitica 16:213–226.Google Scholar
  144. McArthur, C., Hagerman, A., andRobbins, C.T. 1991. Physiological strategies of mammalian herbivores against plant defenses, pp. 103–114,in R.T. Palo and C.T. Robbins (eds.). Plant Defenses against Mammalian Herbivory. CRC Press, Boca Raton, Florida.Google Scholar
  145. McColl, J.G., andPohlman, A.A. 1986. Soluble organic acids and their chelating influence on Al and other metal dissolution from forest soils.Water, Air, Soil Pollut. 31:917–927.Google Scholar
  146. McColl, J.G., Pohlman, A.A., Jersak, J.M., Tam, S.C., andNorthup, R.R. 1990. Organics and metal solubility in California forest soils, pp. 178–195,in S.P. Gessel, D.S. Lacate, G.F. Weetman, and R.F. Powers (eds.). Sustained Productivity of Forest Soils. Proceedings, 7th North American Forest Soils Conference, University of British Columbia, Faculty of Forestry Publication, Vancouver, British Columbia.Google Scholar
  147. Mehansho, H., Butler, L.G., andCarlson, D.M. 1987. Dietary tannins and salivary prolinerich proteins: Interactions, induction and defense mechanisms.Anna. Rev. Nutr. 7:423–440.Google Scholar
  148. Meister, A. 1981. Metabolism and functions of glutathione.Trends Biochem. Sci. 6:231–234.Google Scholar
  149. Mink, G.I., andSaksena, K.N. 1971. Studies on the mechanism of oxidative inactivation of plant viruses byo-quinones.Virology 45:755–763.Google Scholar
  150. Miles, P.W., andPeng, Z. 1989. Studies on the salivary physiology of plant bugs: detoxification of phytochemicals by the salivary peroxidase of aphids.J. Insect Physiol. 35:865–872.Google Scholar
  151. Mole, S., andWaterman, P.G. 1985. Stimulatory effects of tannins and cholic acid on tryptic hydrolysis of proteins: ecological implications.J. Chem. Ecol. 11:1323–1332.Google Scholar
  152. Mole, S., andWaterman, P.G. 1987. Tannins as antifeedents to mammalian herbivores-still an open question?, pp. 572–587,in G.R. Waller (ed.). Allelochemicals: Role in Agriculture and Forestry. ACS Symposium Series 330. American Chemical Society, Washington, D.C.Google Scholar
  153. Mole, S.M., Rogler, J.C., Morell, J., andButler, L.G. 1990. Herbivore growth reduction by tannins: use of Waldbauer ratio techniques and manipulation of salivary protein production to elucidate mechanisms of action.Biochem. Syst. Ecol. 18:183–197.Google Scholar
  154. Müller, R.N., Kalisz, P.J., andLuken, J.O. 1989. Fine root production of astringent phenolics.Oecologia 79:563–565.Google Scholar
  155. Munster, U., andChrost, R.J. 1990. Origin, composition and microbial utilization of dissolved organic matter, pp. 8–46,in Aquatic Microbial Ecology: Biochemical and Molecular Approaches. Springer-Verlag, New York.Google Scholar
  156. Newman, R.M. 1991. Herbivory and detritivory on freshwater macrophytes by invertebrates: A review.J. North Am. Benth. Soc. 10:89–114.Google Scholar
  157. Nichols-Orians, C. 1991. Differential effects of condensed and hydrolyzable tannin on polyphenol oxidase activity of attine symbiotic fungus.J. Chem. Ecol. 17:1811–1819.Google Scholar
  158. Nicholson, R.L., andHammerschmidt, R. 1992. Phenolic compounds and their role in disease resistance.Annu. Rev. Phytopathol. 30:369–389.Google Scholar
  159. Oda, Y., Kato, H., Isoda, Y., Takahashi, N., Yamamoto, T., Takada, Y., andKudo, S. 1989. Purification and properties of phenoloxidase from spinach leaves.Agric. Biol. Chem. 53:2053–2061.Google Scholar
  160. Oh, H.I., Hoff, J.E., Armstrong, G.S., andHaff, L.A. 1980. Hydrophobic interaction in tannin-protein complexes.J. Agric. Food Chem. 28:394–398.Google Scholar
  161. Osawa, R. 1992. Tannin-protein complex-degrading enterobacteria isolated from the alimentary tracts of koalas and a selective medium for their enumeration.Appl. Environ. Microbiol. 58:1754–1759.Google Scholar
  162. Osawa, R., andSly, L.I. 1992. Occurrence of tannin-protein complex degradingStreptococcus sp. in feces of various animals.Syst. Appl. Microbiol. 15:144–147.Google Scholar
  163. Owusu-Ansah, Y.J. 1989. Polyphenoloxidase in wild rice (Zizania palustris).J. Sci. Food Agric. 37:901–904.Google Scholar
  164. Palm, C.A., andSanchez, P.A. 1991. Nitrogen release from the leaves of some tropical legumes as affected by their lignin and polyphenol contents.Soil Biol. Biochem. 23:83–88.Google Scholar
  165. Palo, R.T., andRobbins, C.T. (eds.) 1991. Plant Defenses Against Mammalian Herbivory. CRC Press, Boca Raton, Florida.Google Scholar
  166. Parfitt, D.E., Fox, G.J., andBrosz, J.D. 1986. Relationship of chiorogenic acid concentration in sunflower achenes to bird predation of sunflower.Can. J. Plant Sci. 66:11–17.Google Scholar
  167. Parker, N.O., Sundholm, C., Svanholm, N., Ronlan, A., andHammerich, O. 1979. Hydroxyl compounds, pp. 181–340,in A.J. Bard and J. Lund (eds.). Encyclopedia of Electrochemistry of the Elements, Vol. 11. Marcel Dekker, New York.Google Scholar
  168. Patra, H.K., andMishra, D. 1979. Pyrophosphatase, peroxidase and polyphenoloxidase activities during leaf development and senescence.Plant Physiol. 63:318–323.Google Scholar
  169. Peng, Z., andMiles, P.W. 1988a. Acceptability of catechin and its oxidative condensation products to the rose aphid,Macrosiphum rosae.Entomol. Exp. Appl. 47:255–265.Google Scholar
  170. Peng, Z., andMiles, P.W. 1988b. Studies on the salivary physiology of plant bugs: Function of the catechol oxidase of the rose aphid.J. Insect Physiol. 34:1027–1033.Google Scholar
  171. Peters, N.K., andVerma, D.P.S. 1990. Phenolic compounds as regulators of gene expression in plant-microbe interactions.Mol. Plant-Microbe Interact. 3:4–8.Google Scholar
  172. Phan, C.T. 1991. Phenolics and polyketides in carrots, pp. 559–568,in R.P. Sharma and D.K. Salunkhe (eds.). Mycotoxins and Phytoalexins. CRC Press, Boca Raton, Florida.Google Scholar
  173. Pierpoint, W.S. 1969a. o-Quinones formed in plant extracts. Their reactions with amino acids and peptides.Biochem. J. 112:609–616.Google Scholar
  174. Pierpoint, W.S. 1969b. o-Quinones formed in plant extracts. Their reaction with bovine serum albumin.Biochem. J. 112:619–629.Google Scholar
  175. Putnam, A.R., andTang, C. 1986. The Science of Allelopathy. John Wiley and Sons, New York.Google Scholar
  176. Racon, L., Sadaka, N., Gil, G., Le Petit, J., Matheron, R., Poinsot-Balaguer, N., Sigoillot, J.C., andWoltz, P. 1988. Histological and chemical changes in tannic compounds of ever-green oak leaf litter.Can. J. Bot. 66:663–667.Google Scholar
  177. Raubenheimer, D. 1992. Tannic acid, protein, and digestible carbohydrate: Dietary imbalance and nutritional compensation in locusts.Ecology 73:1012–1027.Google Scholar
  178. Reimer, J., andWhittaker, J.B. 1989. Air pollution and insect herbivores: Observed interactions and possible mechanisms, pp. 73–105,in E.A. Bernays (ed.). Insect-Plant Interactions, Vol. I. CRC Press, Boca Raton, Florida.Google Scholar
  179. Reese, J.C. 1978. Chronic effects of plant allelochemics on insect nutritional physiology.Entomol. Exp. Appl. 24:425–431.Google Scholar
  180. Rhoades, D.F. 1977. The antiherbivore chemistry ofLarrea, pp. 135–175,in T.J. Mabry, J.H. Hunziker, and D.R. DiFeo (eds.). Creosote Bush: Biology and Chemistry ofLarrea in the New World Deserts. Dowden, Hutchinson & Ross, Stroudsburg, Pennsylvania.Google Scholar
  181. Rhoades, D.F., andCates, R.G. 1976. Toward a general theory of plant antiherbivore chemistry.Recent Adv. Phytochem. 10:168–213.Google Scholar
  182. Rice, E.L. 1984. Allelopathy. Academic Press, Orlando, Florida, 422 pp.Google Scholar
  183. Rietsma, C.S., Valiela, J., andBuchsbaum, R. 1988. Detrital chemistry, growth, and food choice in the salt-marsh snail (Melampus bidentatus).Ecology 69:261–266.Google Scholar
  184. Rietveld, W.J. 1983. Allelopathic effects of juglone on germination and growth of several herbaceous and woody species.J. Chem. Ecol. 9:295–308.Google Scholar
  185. Robb, D.A. 1984. Tyrosinase, pp. 208–241,in R. Lontie (ed.). Copper Proteins and Copper Enzymes. CRC Press, Boca Raton, Florida.Google Scholar
  186. Robbins, C.T., Hagerman, A.E., Austin, P.J., McArthur, C., andHanley, T.A. 1991. Variation in mammalian physiological responses to a condensed tannin and its ecological implications.J. Mammol. 72:480–486.Google Scholar
  187. Rossiter, M.C., Schultz, J.C., andBaldwin, I.T. 1988. Relationships among defoliation, red oak phenolics, and gypsy moth growth and reproduction.Ecology 69:267–277.Google Scholar
  188. Ruggiero, P., andRadogna, V.M. 1988. Humic acids-tyrosinase interactions as a model of soil humic-enzyme complexes.Soil Biol. Biochem. 20:353–359.Google Scholar
  189. Ryan, J.D., Gregory, P., andTingey, W.M. 1982. Phenolic oxidase activities in glandular trichomes ofSolanum berthaultii.Phytochemistry 21:1885–1887.Google Scholar
  190. Salunkhe, D.K., Chavan, J.K., andKadam, S.S. 1990. Dietary Tannins: Consequences and Remedies. CRC Press, Boca Raton, Florida.Google Scholar
  191. Sanchez-Ferrer, A., Bru, R., Valero, E., andGarcia-Carmona, F. 1989. Changes in pH-dependent grape polyphenoloxidase activity during maturation.J. Sci. Food Agric. 37:1242–1245.Google Scholar
  192. Scandalios, J.G. 1990. Response of plant antioxidant defense genes to environmental stress.Adv. Genet. 28:1–41.Google Scholar
  193. Schlesinger, W.H. 1991. Biogeochemistry: An Analysis of Global Change. Academic Press, San Diego, California.Google Scholar
  194. Schmidt, S.K. 1988. Degradation of juglone by soil bacteria.J. Chem. Ecol. 14:1561–1571.Google Scholar
  195. Schüler, P. 1990. Natural antioxidants exploited commercially, pp. 99–170,in B.J.F. Hudson (ed.). Food Antioxidants. Elsevier Science Publ., Amsterdam.Google Scholar
  196. Schultz, J.C. 1989. Tannin-insect interactions, pp. 417–433,in R.W. Hemingway and J.J. Karchesy (eds.). Chemistry and Significance of Condensed Tannins. Plenum Press, New York.Google Scholar
  197. Schultz, J.C., andKeating, S.T. 1991. Host-plant mediated interactions between the gypsy moth and a baculovirus, pp. 489–506in R. Barbosa, V.A. Krischik, and C.G. Jones (eds.). Microbial Mediation of Plant-Herbivore Interactions. John Wiley & Sons, New York.Google Scholar
  198. Schultz, J.C,Hunter, M.D., andAppel, H.M. 1992. Antimicrobial activity of polyphenols mediates plant-herbivore interactions, pp. 621–637,in R.W. Hemingway (ed.). Plant Polyphenols: Biogenesis, Chemical Properties, and Significance. Plenum Press.Google Scholar
  199. Seigler, D., andPrice, P.W. 1976. Secondary compounds in plants: primary functions.Am. Nat. 110:101–105.Google Scholar
  200. Shafer, S.R., andBlum, U. 1991. Influence of phenolic acids on microbial populations in the rhizosphere of cucumber.J. Chem. Ecol. 7:369–389.Google Scholar
  201. Shannon, M.J.R., andBartha, R. 1988. Immobilization of leachable toxic soil pollutants by using oxidative enzymes.Appl. Environ. Microbiol. 54:1719–1723.Google Scholar
  202. Smith, E.S., Dudley, M.W., andLynn, D.G. 1990. Vegetative/parasitic transition: Control and plasticity inStriga development.Plant Physiol. 93:208–215.Google Scholar
  203. Smith, J.A., Hammerschmidt, R., andFulbright, D.W. 1991. Rapid induction of systemic resistance in cucumber byPseudomonas syringae pv.syringae.Physiol. Mol. Plant Pathol. 38:223–235.Google Scholar
  204. Smith, M.T. 1985. Quinones as mutagens, carcinogens, and anticancer agents: Introduction and overview.J. Toxicol. Environ. Health 16:665–672.Google Scholar
  205. Southerton, S.G., andDeverall, B.J. 1990. Changes in phenylalanine ammonia-lyase and peroxidase activities in wheat cultivars expressing resistance to the leaf-rust fungus.Plant Pathol. 39:223–230.Google Scholar
  206. Steinberg, P.D., andVan Altena, F.A. 1992. Tolerance of marine invertebrate herbivores to brown algal phlorotannins in temperate Australasia.Ecol. Monogr. 62:189–222.Google Scholar
  207. Steinberg, P.D., Edyvane, K., De Nys, R., Birdsey, R., andVan Altena, F.A. 1991. Lack of avoidance of phenolic rich brown algae by tropical herbivorous fishes.Mar. Biol. 109:335–343.Google Scholar
  208. Steinly, B.A., andBerenbaum, M. 1985. Histopathological effects of tannins on the midgut epithelium ofPapilio polyxenes andPapilio glaucus.Entomol. Exp. Appl. 39:3–9.Google Scholar
  209. Stevenson, F.J. 1982. Humus Chemistry. Genesis, Composition, Reactions. John Wiley & Sons, New York.Google Scholar
  210. Stipanovic, R.D.,Mace, M.E.,Elissalde, M.H., andBell, A.A. 1991. Desoxyhemigossypol, a cotton phytoalexin, structure-activity relationship, pp. 336–351,in P.A. Hedin (ed.). Naturally Occurring Pest Bioregulators. American Chemical Society Symposium Series 449, Washington, D.C.Google Scholar
  211. Stout, R.J. 1989. Effects of condensed tannins on leaf processing in mid-latitude and tropical streams: A theoretical approach.Can. J. Fish. Aquat. Sci. 46:1097–1106.Google Scholar
  212. Swain, T. 1979. Tannins and lignins, pp. 657–718,in G.A. Rosenthal and D.H. Janzen (eds.). Herbivores: Their Interactions with Secondary Plant Metabolites, 2nd ed., Vol. 1: The Chemical Participants. Academic Press, San Diego, California.Google Scholar
  213. Szklarz, G.D., Antibus, R.K., Sinsabaugh, R.L., andLinkins, A.E. 1989. Production of phenol oxidases and peroxidases by wood-rooting fungi.Mycologia 81:234–240.Google Scholar
  214. Takechi, M., andTanaka, Y. 1987. Binding of 1,2,3,4,6-pentagalloyiglucose to proteins, lipids, nucleic acids and sugars.Phytochemistry 26:95–97.Google Scholar
  215. Tallemy, D.W., andRaupp, M.J. 1991. Phytochemical Induction by Herbivores. Wiley Interscience, New York.Google Scholar
  216. Tan, K.H., andBinger, A. 1986. Effect of humic acid on aluminum toxicity in corn plants.Soil Sci. 141:20–25.Google Scholar
  217. Taper, M.L., Zimmerman, E.R., andCase, T.J. 1986. Sources of mortality for a cynipid gall-wasp [Dryocosmus dubiosus (Hymenoptera: Cynipidae)]: The importance of the tannin/fungus interaction.Oecologia 68:437–445.Google Scholar
  218. Tate, R.L., III. 1987. Soil Organic Matter: Biological and Ecological Effects. John Wiley & Sons, New York.Google Scholar
  219. Taylor, C.E., andMurant, A.F. 1966. Nematicidal activity of aqueous extracts from raspberry canes and roots.Nematology 12:488–494.Google Scholar
  220. Tugwell, S., andBranch, G.M. 1992. Do polyphenols in marine algae reduce digestibility?Ecology 73:205–215.Google Scholar
  221. Undeen, A.H. 1979. Simulid larval midgut pH and its implications for control.Mosquito News 39:391–392.Google Scholar
  222. Valero, E., andGarcia-Carmona, F. 1992. Hysteresis and cooperative behavior of a latent plant polyphenoloxidase.Plant Physiol. 98:774–776.Google Scholar
  223. Van Alstyne, K.L., andPaul, V.J. 1990. The biogeography of polyphenolic compounds in marine macroalgae: Temparate brown algal defenses deter feeding by tropical herbivorous fishes.Oecologia 84:158–163.Google Scholar
  224. Van Den Berg, B., andVan Huystee, R.B. 1984. Rapid isolation of plant peroxidase. Purification of peroxidasea fromPetunia.Physiol. Plant. 60:299–304.Google Scholar
  225. Van Huystee, R.B., andCairns, W.L. 1980. Appraisal of studies on induction of peroxidase and associated porphyrin metabolism.Bot. Rev. 46:429–446.Google Scholar
  226. Vaughn, K.C., andDuke, S.O. 1984. Function of polyphenol oxidase in higher plants.Physiol. Plant. 60:106–112.Google Scholar
  227. Waterman, P.G., andMole, S. 1989. Extrinsic factors influencing production of secondary metabolites in plants, pp. 107–134,in E.A. Beraays (ed.). Insect-Plant Interactions, Vol. I. CRC Press, Boca Raton, Florida.Google Scholar
  228. Werner, R.M., andDindal, D.L. 1986. Nutritional ecology of soil arthropods, pp. 815–836,in F. Slansky, Jr., and J.G. Rodrigruez, (eds.). Nutritional Ecology of Insects, Mites, Spiders, and Related Invertebrates. John Wiley & Sons. New York.Google Scholar
  229. Wetzel, R.G. 1993. Humic compounds from wetlands: Complexation, inactivation, transport, and reactivation of microbial extracellular enzymes.Verh. Internat. Verein. Limnol. In press.Google Scholar
  230. Williamson, G.B., andWeidenhamer, J.D. 1990. Bacterial degradation of juglone: Evidence against allelopathy?J. Chem. Ecol. 16:1739–1741.Google Scholar
  231. Ye, X.S., Pan, S.Q., andKuc, J. 1990. Activity, isozyme pattern, and cellular localization of peroxidase as related to systemic resistance of tobacco to blue mold (Peronospora tabacina) and to tobacco mosaic virus.Phytopathology 80:1295–1299.Google Scholar
  232. Yu, S.J. 1987. Quinone reductase of phytophagous insects and its induction by allelochemicals.Comp. Biochem. Physiol. 87B:621–624.Google Scholar
  233. Zucker, W.V. 1983. Tannins: Does structure determine function? An ecological perspective.Am. Nat. 121:335–365.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Heidi M. Appel
    • 1
  1. 1.Pesticide Research LabThe Pennsylvania State UniversityUniversity Park

Personalised recommendations