Advertisement

Plant Systematics and Evolution

, Volume 200, Issue 1–2, pp 125–140 | Cite as

Unidirectionality of floral colour changes

  • Klaus Lunau
Article

Abstract

Many angiosperms have arranged their flowers in inflorescences forming a distinct signalling unit to flower visitors. In some species, the flowers of inflorescences undergo a temporal colour change corresponding exactly to a change in the reward status. Based on information obtained from the spectral reflection curves of pre-change and postchage colours of flower corollas and/or floral guides, it was possible to demonstrate that the colour phase associated with reward closely corresponds to the visual stimuli which trigger behavioural responses of inexperienced flower visitors, and that the colour phase associated with less reward corresponds to visual stimuli less attractive to naïve flower visitors. Reciprocal colour changes were not observed. It is to be assumed that the unidirectionality of floral colour changes is an adaptation of angiosperms aimed at the guidance of first-time flower visitors. Signalling reward to inexperienced flower visitors is an additional function of floral colour changes. The main function of floral colour changes, however, is to provide cues with which the flower visitors can learn to associate one colour phase with reward.

Key words

Angiosperms Colour change floral colour phase innate flower detection colour preference pollination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Backhaus, W., 1991: Color opponent coding in the visual system of the honeybee. — Vision Res.31: 1381–1397.Google Scholar
  2. —, 1993: Color vision and color choice behavior of the honey bee. — Apidologie24: 309–331.Google Scholar
  3. —, 1987: Color distance derived from a receptor model of color vision in the honeybee. — Biol. Cybernetics55: 321–331.Google Scholar
  4. Biedinger, N., Barthlott, W., 1993: Untersuchungen zur Ultraviolettreflexion von Angiospermenblüten I.Monocotyledonae. — Trop. Subtrop. Pflanzenwelt86: 1–122.Google Scholar
  5. Bishop, L. G., 1974: An ultraviolet photoreceptor in an dipteran compound eye. — J. Comp. Physiol.91: 267–275.Google Scholar
  6. Burr, B., Barthlott, W., 1993: Untersuchungen zur Ultraviolettreflexion von Angiospermenblüten II.Magnoliidae, Ranunculidae, Hamamelididae, Caryophyllidae, Rosidae. — Trop. Subtrop. Pflanzenwelt87: 1–193.Google Scholar
  7. —, 1995: Untersuchungen zur Ultraviolettreflexion von Angiospermenblüten III.Dilleniidae undAsteridae. — Trop. Subtrop. Pflanzenwelt93: 1–185.Google Scholar
  8. Burkhardt, D., 1983: Wavelength perception and colour vision. — InCosens, D. J., Vince-Price, D., (Eds): Society for Experimental Biology Symposium XXXVI “The biology of photoreception”, pp. 371–397. — Cambridge: Cambridge University Press.Google Scholar
  9. Caspar, B. B., La Pine, T. R., 1984: Changes in corolla color and other floral characteristics inCryptantha humilis (Boraginaceae): cues to discourage pollinators? — Evolution38: 128–141.Google Scholar
  10. Chittka, L., 1992: The colour hexagon: a chromaticity diagram based on photoreceptor excitations as a generalized representation of colour opponency. — J. Comp. Physiol. A170: 533–543.Google Scholar
  11. —, 1992: Color coding and innate preferences for flower color patterns in bumblebees. — InElsner, N., Richter, D. W., (Eds): Proceedings of the 20th Göttingen Neurobiology Conference, p. 298. — Stuttgart: Thieme.Google Scholar
  12. —, 1992: The evolutionary adaptation of flower colors and the insect pollinator's color vision. — J. Comp. Physiol. A171: 171–181.Google Scholar
  13. —, 1992: Opponent coding is a universal strategy to evaluate the photoreceptor inputs inHymenoptera. — J. Comp. Physiol. A170: 545–563.Google Scholar
  14. —, 1994: Ultraviolet as a component of flower reflections, and the colour perception ofHymenoptera. — Vision Res.34: 1489–1508.Google Scholar
  15. Daumer, K., 1958: Blumenfarben, wie sie die Bienen sehen. — Z. vergleichende Physiol.41: 49–110.Google Scholar
  16. Delph, L. F., Lively, C. M., 1985: Pollinator visits to floral colour phases ofFuchsia excorticata. — New Zealand J. Zool.12: 599–603.Google Scholar
  17. Giurfa, M., Nuñez, J., Chittka.L., Menzel, R., 1995: Colour preferences of flower-naive honeybees. — J. Comp. Physiol. A177: 247–259.Google Scholar
  18. Goldsmith, T. H., 1990: Optimization, constraint, and history in the evolution of eyes. — Quart. Rev. Biol.65: 281–322.Google Scholar
  19. —, 1979: Discrimination of colors by the black-chinned hummingbird,Archilochus alexandri. — J. Comp. Physiol.130: 209–220.Google Scholar
  20. Gori, D. F., 1989: Floral colour change inLupinus argenteus (Fabaceae): Why should plants advertise the location of unrewarding flowers to pollinators? — Evolution43: 870–881.Google Scholar
  21. Höglund, G., Hamdorf, K., Rosner, G., 1973: Trichromatic visual system in an insect and its sensitivity control by blue light. — J. Comp. Physiol.86: 265–279.Google Scholar
  22. Ilse, D., 1949: Colour discrimination in the dronefly,Eristalis tenax. — Nature163: 255–256.Google Scholar
  23. Jokl, S., Fürnkranz, D., 1989: Antheseabhängige UV-Muster in Blütenständen von Asteraceen. — Pl. Syst. Evol.165: 91–94.Google Scholar
  24. Knoll, F., 1925: Lichtsinn und Blütenbesuch des Falters vonDeilephila livicornica. — Z. vergleichende Physiol.2: 329–380.Google Scholar
  25. —, 1927: Über Abendschwärmer und Schwärmerblumen. — Ber. Deutsch. Bot. Ges.45: 510–518.Google Scholar
  26. —, 1956: Die Biologie der Blüte. — Berlin: Springer.Google Scholar
  27. Kostka, G., 1922: Farbenwechsel und Insektenbesuch beiPulmonaria officinalis L. — Österr. Bot. Z.71: 246–254.Google Scholar
  28. Kruijer, J. D., 1987: The ecological function of the retention of withered, non-rewarding flowers ofEchium plantagineum. — Acta Bot. Neerl.36: 139–140.Google Scholar
  29. Kugler, H., 1936: Die Ausnutzung der Saftmalsumfärbung bei den Roßkastanienblüten durch Bienen und Hummeln. — Ber. Deutsch. Bot. Ges.54: 394–399.Google Scholar
  30. —, 1950: Der Blütenbesuch der Schlammfliege (Eristalomyia tenax). — Z. vergleichende Physiol.32: 328–347.Google Scholar
  31. —, 1963: UV-Musterungen auf Blüten und ihr Zustandekommen. — Planta59: 296–329.Google Scholar
  32. —, 1966: UV-Male auf Blüten. — Ber. Deutsch. Bot. Ges.79: 57–70.Google Scholar
  33. —, 1970: Blütenökologie. — Stuttgart: Fischer.Google Scholar
  34. Lamont, B., 1985: The significance of flower colour change in eight co-occurring shrub species. — Bot. J. Linn. Soc.90: 145–155.Google Scholar
  35. Laughlin, S. B., 1981: Neural principles in the peripheral visual system of invertebrates. — InAutrum, H., (Ed.): Invertebrate visual centers and behaviour. — Handbook of sensory physiology,VII/6b, pp. 133–280. — Berlin, Heidelberg, New York: Springer.Google Scholar
  36. Lex, T., 1954: Duftmale an Blüten. — Z. vergleichende Physiol.36: 212–234.Google Scholar
  37. Lunau, K., 1988: Innate and learned behaviour of flower-visiting hoverflies. — Flowerdummy experiments withEristalis pertinax (Scopoli) (Diptera, Syrphidae). — Zool. Jahrb. Physiol.92: 487–499.Google Scholar
  38. —, 1990: Colour saturation triggers innate reactions to flower signals: flower dummy experiments with bumble bees. — J. Comp. Physiol. A166: 827–834.Google Scholar
  39. —, 1992a: Limits of colour learning in a flower-visiting hoverfly,Eristalis tenax L. (Syrphidae, Diptera). — Eur. J. Neurosci., Suppl.5: 103.Google Scholar
  40. —, 1992b: Innate flower recognition in bumble bees: orientation of antennae to visual stamen signals. — Canad. J. Zool.70: 2139–2144.Google Scholar
  41. —, 1993: Interspecific diversity and uniformity of flower colour patterns as cues for learned discrimination and innate detection of flowers. — Experientia49: 1002–1010.Google Scholar
  42. —, 1995: Notes on the colour of pollen. — Pl. Syst. Evol.198: 231–248.Google Scholar
  43. —, 1995: Innate colour preferences of flower visitors. — J. Comp. Physiol. A177: 1–19.Google Scholar
  44. —, 1994: Visual key stimuli of the innate proboscis extension in the hoverflyEristalis tenax L. (Syrphidae, Diptera). — J. Comp. Physiol. A174: 574–579.Google Scholar
  45. —, —, 1995: Wavelength-specific behaviour in the innate proboscis extension of the hoverflyEristalis tenax. — InElsner, N., Menzel, M., (Eds): Proceedings of the 23th Göttingen Neurobiology Conference, p. 376. — Stuttgart: Thieme.Google Scholar
  46. - -Chittka, L., 1996: Colour choices of naive bumble bees and their implications for colour perception. — J. Comp. Physiol. A (in press).Google Scholar
  47. Macior, L. W., 1964: An experimental study of the floral ecology ofDodecatheon meadia. — Amer. J. Bot.51: 96–108.Google Scholar
  48. Menzel, R., 1967: Untersuchungen zum Erlernen von Spektralfarben durch die Honigbiene (Apis mellifica). — Z. vergleichende Physiol.56: 22–62.Google Scholar
  49. —, 1979: Spectral sensitivity and color vision in invertebrates. — InAutrum, H., (Ed.): Comparative physiology and evolution of vision in invertebrates. — Handbook of sensory physiologyVII/6 a, pp. 503–580. — Berlin, Heidelberg, New York: Springer.Google Scholar
  50. —, 1985: Learning in honeybees in an ecological and behavioral context. — Fortschr. Zool.31: 55–74.Google Scholar
  51. —, 1993: The ecology of flower colours and the natural colour vision of insect pollinators: the Israeli flora as a study case. — Biol. Rev.68: 81–120.Google Scholar
  52. Moelino, B. M., 1987: Changing of UV-patterns of flowers ofEchium plantagineum during senescence. — Acta Bot. Neerl.36: 139.Google Scholar
  53. Osche, G., 1983: Optische Signale in der Coevolution von Pflanze und Tier. — Ber. Deutsch. Bot. Ges.96: 1–27.Google Scholar
  54. Peitsch, D., Fietz, A., Hertel, H., de Souza, J., Fix Ventura, D., Menzel, R., 1992: The spectral input system of hymenopteran insects and their receptor-based colour vision. — J. Comp. Physiol. A170: 23–40.Google Scholar
  55. Schemske, D. W., 1976: Pollinator specificity inLantana camara andL. trifolia (Verbenaceae). — Biotropica8: 260–264.Google Scholar
  56. Scherer, C., Kolb, G., 1987: Behavioral experiments on the visual processing of color stimuli inPieris brassicae L. (Lepidoptera). — J. Comp. Physiol. A160: 645–656.Google Scholar
  57. Steiner, A., Paul, R., Gemperlein, R., 1987: Retinal receptortypes inAglais urticae andPieris brassicae (Lepidoptera) revealed by analysis of the electroretinogram obtained with Fourier interferometric stimulation (FIS). — J. Comp. Physiol. A160: 247–258.Google Scholar
  58. Tsukahara, Y., Horridge, G. A., 1977a: Visual pigment spectra from sensitivity measurements after chromatic adaptation of single dronefly retinula cells. — J. Comp. Physiol.114: 233–251.Google Scholar
  59. —, —, 1977b: Interaction between two retinula cell types in the anterior eye of the droneflyEristalis. — J. Comp. Physiol.115: 287–298.Google Scholar
  60. Vogel, S., 1950: Farbwechsel und Zeichnungsmuster bei Blüten. — Österr. Bot. Z.97: 44–100.Google Scholar
  61. —, 1954: Blütenbiologische Typen als Elemente der Sippengliederung. — InTroll, W., Guttenberg, H., (Eds): Botanische Studien. — Jena: G. Fischer.Google Scholar
  62. Wacht, S., Lunau, K., 1995: Photoreceptor interactions in the innate proboscis extension in the hoverflyEristalis tenax as revealed by behavioural tests under selective chromatic adaptation. — InElsner, N., Menzel, M. (Eds): Proceedings of the 23th Göttingen Neurobiology Conference, p. 377. — Stuttgart: Thieme.Google Scholar
  63. Waser, N. M., 1986: Flower constancy: definition, cause, and measurement. — Amer. Naturalist127: 593–603.Google Scholar
  64. —, 1979: Effective mutualism between sequentially flowering plant species. — Nature181: 670–672.Google Scholar
  65. Weiss, M. R., 1991a: Floral colour changes as cues for pollinators. — Acta Hort.288: 294–298.Google Scholar
  66. —, 1991b: Floral color changes as cues for pollinators. — Nature354: 227–229.Google Scholar
  67. Zander, E., 1921: Das Leben der Biene. Handbuch der Bienenkunde IV. — Stuttgart: Ulmer.Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Klaus Lunau
    • 1
  1. 1.Institut für ZoologieRegensburgGermany

Personalised recommendations