Plant Systematics and Evolution

, Volume 215, Issue 1–4, pp 85–99 | Cite as

The use of a non-coding region of chloroplast DNA in phylogenetic studies of the subtribeSonchinae (Asteraceae:Lactuceae)

  • Seung-Chul Kim
  • Daniel J. Crawford
  • Robert K. Jansen
  • Arnoldo Santos-Guerra


The systematic utility of sequences from a non-coding region of chloroplast DNA (cpDNA) betweenpsbA andtrnH(GUG) was examined by assessing phylogenetic relationships in subtribeSonchinae (Asteraceae:Lactuceae). Primers constructed against highly conserved regions of tRNA genes were used for PCR amplification and sequencing. ThepsbA-trnH intergenic spacer contains several insertions and deletions (indels) inSonchinae with the length varying from 385 to 450 bp. Sequence divergence ranges from 0.00% to 7.54% withinSonchinae, with an average of 2.4%. Average sequence divergence inSonchus subg.Sonchus is 2.0%, while the mean for subg.Dendrosonchus and its close relatives in Macaronesia (the woodySonchus alliance) is 1.0%. Our results suggest that this region does not evolve rapidly enough to resolve relationships among closely related genera or insular endemics in theAsteraceae. The phylogenetic utility ofpsbA-trnH sequences of the non-coding cpDNA was compared to sequences from the ITS region of nuclear ribosomal DNA. The results suggest that ITS sequences evolve nearly four times faster thanpsbA-trnH intergenic spacer sequences. Furthermore, the ITS sequences provide more variable and phylogenetically informative sites and generate more highly resolved trees with more strongly supported clades, and thus are more suitable for phylogenetic comparisons at lower taxonomic levels than thepsbA-trnH intergenic chloroplast sequences.

Key words

Sonchinae Asteraceae cpDNA non-coding region (psbA-trnHGUGphylogeny 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ambrosini, M., Ceci, L. R., Fiorella, S., Gallerani, R., 1992: Comparison of regions coding for tRNA (His) genes of mitochondrial and chloroplast DNA in sunflower: a proposal concerning the classification of ‘CP-like’ tRNA genes. — Pl. Molec. Biol.20: 1–4.Google Scholar
  2. Baldwin, B. G., Campbell, C. S., Porter, J. M., Sanderson, M. J., Wojciechowski, M. F., Donoghue, M. J., 1995: Utility of nuclear ribosomal DNa internal transcribed spacer sequences in phylogenetic analysis of angiosperms. — Ann. Missouri Bot. Gard.82: 247–277.Google Scholar
  3. Böhle, U.-R., Hilger, H., Cerff, R., Martin, W. F., 1994: Non-coding chloroplast DNA for plant molecular systematics at the infrageneric level. — InSchierwater, B., Streit, B., Wagner, G. P., Desalle, R., (Eds): Molecular ecology and evolution: Approaches and applications, pp. 391–403. — Basel: Birkhäuser.Google Scholar
  4. Boulos, L., 1972: Révision systématique du genreSonchus L. s.l. I. Introduction et classification. — Bot. Not.125: 287–305.Google Scholar
  5. Bremer, K., 1988: The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. — Evolution42: 795–803.Google Scholar
  6. , 1993: New subtribes of theLactuceae. — Novon3: 328–330.Google Scholar
  7. , 1994:Asteraceae — cladistics and classification. — Oregon: Timber Press.Google Scholar
  8. Clark, L. G., Zhang, W., Wendel, J. F., 1995: A phylogeny of the grass family based onndhF sequence data. — Syst. Bot.20: 436–460.Google Scholar
  9. Conti, E., Fischbach, A., Sytsma, K. J., 1993: Tribal relationships inOnagraceae: implications fromrbcL sequence data. — Ann. Missouri Bot. Gard.80: 672–685.Google Scholar
  10. Doebley, J., Durbin, M. L., Golenberg, E. M., Clegg, M. T., Ma, D. P., 1990: Evolutionary analysis of the large subunit of carboxylase (rbcL) nucleotide sequence among the grasses (Gramineae). — Evolution44: 1097–1108.Google Scholar
  11. Donoghue, M. J., Olmstead, R. G., Smith, J. F., Palmer, J. D., 1992: Phylogenetic relationships ofDipsacales based onrbcL sequences. — Ann. Missouri Bot. Gard.79: 333–345.Google Scholar
  12. Doyle, J. J., 1992: Gene trees and species trees: molecular systematics as one-character taxonomy. — Syst. Bot.17: 144–163.Google Scholar
  13. , 1987: A rapid DNA isolation procedure for small quantities of fresh leaf materials. — Phytochem. Bull.19: 11–15.Google Scholar
  14. Ehrendorfer, F., Manen, J. -F., Natali, A., 1994: cpDNA intergene sequences corroborate restriction site data for reconstructingRubiaceae phylogeny. — Pl. Syst. Evol.190: 245–248.Google Scholar
  15. Felsenstein, J., 1985: Confidence limits on phylogenies: an approach using the bootstrap. — Evolution39: 783–791.Google Scholar
  16. , 1986–1993: PHYLIP: Phylogenetic Inference Package. Version 3.5c. — Seattle, WA: The University of Washington.Google Scholar
  17. Francisco-Ortega, J., Jansen, R. K., Santos-Guerra, A., 1995: Chloroplast DNA evidence of colonization, adaptive radiation, and hybridization in the evolution of the Macaronesian flora. — Proc. Natl. Acad. Sci USA93: 4085–4090.Google Scholar
  18. Gadek, P. A., Ouinn, C. J., 1993: An analysis of relationships within theCupressaceae sensu stricto based onrbcL sequences. — Ann. Missouri Bot. Gard.80: 581–586.Google Scholar
  19. Gaut, B. S., Muse, S. V., Clark, W. D., Clegg, M. T., 1992: Relative rates of nucleotide substitutions at therbcL locus of monocotyledonous plants. — J. Molec Evol.35: 292–303.Google Scholar
  20. Gielly, L., Taberlet, P., 1994: Chloroplast DNA polymorphism at the intrageneric level: implications for the establishment of plant phylogenies. — Compt. Rend. Acad. Sci. Paris, Sér. 3, Sci. Vie317: 685–692.Google Scholar
  21. , 1996: A phylogeny of the European gentians inferred from chloroplasttrnL(UAA) intron sequences. — Bot. J. Linn. Soc.120: 57–75.Google Scholar
  22. , 1996: Phylogenetic use of noncoding regions in the genusGentiana L.: chloroplasttrnL (UAA) intron versus nuclear ribosomal internal transcribed spacer sequences. — Molec. Phylogenet. Evol.5: 460–466.Google Scholar
  23. Ham, R. C. H. J. van, Hart, H 't., Mes, T. H. M., Sandbrink, J. M., 1994: Molecular evolution of noncoding regions of the chloroplast genome in theCrassulaceae and related species. — Curr. Genet.25: 558–566.Google Scholar
  24. Hansen, A., Sunding, P., 1985: Flora of Macaronesia. Checklist of vascular plants. 3rd revised edn. — Sommerfeltia1: 26–29.Google Scholar
  25. Jansen, R. K., Wee, J. L., Millie, D., 1998: Comparative utility of chloroplast DNA restriction site and DNA sequencing data for phylogenetic studies in plants. — InSoltis, D., Soltis, P., Doyle, J. J., (Eds): Molecular systematics of plants, II: DNA sequencing, pp. 87–100. — New York: Kluwer Academic Publishers.Google Scholar
  26. Johnson, L. A., Soltis, D. E., 1994:matK DNA sequences and phylogenetic reconstruction inSaxifragaceae sensu stricto. — Syst. Bot.19: 143–156.Google Scholar
  27. , 1995: Phylogenetic inference inSaxifragaceae sensu stricto andGilia (Polymoniaceae) usingmatK sequences. — Ann. Missouri Bot. Gard.82: 149–175.Google Scholar
  28. Kim, K.-J., Jansen, R. K., 1995:ndhF sequence evolution and the major clades in the sunflower family. — Proc. Natl. Acad. Sci. USA92: 10379–10383.Google Scholar
  29. , 1992: Phylogenetic implications ofrbcL sequence variation in theAsteraceae. — Ann. Missouri Bot. Gard.79: 428–445.Google Scholar
  30. Kim, J.-H., Hart, H 't., Mes, T. H. M., 1996: The phylogenetic position of East AsianSedum species (Crassulaceae) based on chloroplast DNAtrnL(UAA)-trnF(GAA) intergenic spacer sequence variation. — Acta Bot. Neerl.45: 309–321.Google Scholar
  31. Kim, S.-C., Crawford, D. J., Francisco-Ortega, J., Santos-Guerra, A., 1996a: A common origin for woodySonchus and five related genera in the Macaronesian islands: Molecular evidence for extensive radiation. — Proc. Natl. Acad. Sci. USA93: 7743–7748.Google Scholar
  32. , 1996b: Phylogenetic relationships among the genera of the subtribeSonchinae (Asteraceae): Evidence from the ITS sequences. — Syst. Bot.21: 417–432.Google Scholar
  33. Kim, Y.-D., Jansen, R. K., 1996: Phylogenetic implications ofrbcL and ITS sequence variation in theBerberidaceae. — Syst. Bot.21: 381–396.Google Scholar
  34. Kimura, M., 1980: Simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. — J. Molec. Evol.16: 111–120.Google Scholar
  35. Kron, K. A., Chase, M. W., 1993: Systematics of theEricaceae, Empetraceae, Epacridiaceae and related taxa based uponrbcL sequence data. — Ann. Missouri Bot. Gard.80: 735–741.Google Scholar
  36. Maddison, D. R., 1991: The discovery and importance of multiple islands of most-parsimonious trees. — Syst. Zoo.40: 315–328.Google Scholar
  37. Manen, J.-F., Natali, A., 1995: Comparison of the evolution of ribulose-1,5-biphosphate carboxylase (rbcL) andatpB-rbcL non-coding spacer sequences in a recent plant group, the tribeRubieae (Rubiaceae). — J. Molec. Evol.41: 920–927.Google Scholar
  38. Ehrendorfer, F., 1994: Phylogeny ofRubiaceae-Rubiae inferred from the sequence of a cpDNA intergene region. — Pl. Syst. Evol.190: 195–211.Google Scholar
  39. Natali, A., Manen, J.-F., Ehrendorfer, F., 1995: Phylogeny of theRubiaceae-Rubioideae, in particular the tribeRubieae: Evidence from a non-coding chloroplast DNA sequences. — Ann. Missouri Bot. Gard.82: 428–439.Google Scholar
  40. Neuhaus, H., Link, G., 1987: The chloroplast tRNALys (UUU) gene from mustard. — Curr. Genet.11: 251–257.Google Scholar
  41. Olmstead, R. G., Reeves, P. A., 1995: Evidence for the polyphyly of theScrophulariaceae based on chloroplastrbcL andndhF sequences. — Ann. Missouri Bot. Gard.82: 176–193.Google Scholar
  42. Pax, D. L., Price, R. A., Michaels, H. J., 1997: Phylogenetic position of the Hawaiian geraniums based onrbcL sequences. — Amer. J. Bot.84: 72–78.Google Scholar
  43. Plunkett, G. M., Soltis, D. E., Soltis, P. S., Brooks, R. E., 1995: Phylogenetic relationships betweenJuncaceae andCyperaceae: insights fromrbcL sequences data. — Amer. J. Bot.82: 520–525.Google Scholar
  44. Price, R. A., Palmer, J. D., 1993: Phylogenetic relationships of theGeraniaceae andGeraniales fromrbcL sequences comparisons. — Ann. Missouri Bot. Gard.80: 661–671.Google Scholar
  45. Reith, M. E., Straus, N. A., 1987: Nucleotide sequence of the chloroplast gene responsible for triazine resistance in canola. — Theor. Appl. Genet.73: 357–363.Google Scholar
  46. Sang, T., Crawford, D. J., Kim, S.-C., Stuessy, T. F., 1994: Radiation of the endemic genusDendroseris (Asteraceae) on the Juan Fernandez Islands: evidence from sequences of the ITS region of nuclear ribosomal DNA. — Amer. J. Bot.81: 1494–1501.Google Scholar
  47. Scotland, R. W., Sweere, J. A., Reeves, P. A., Olmstead, R. G., 1995: Higher-level systematics ofAcanthaceae determined by chloroplast DNA sequences. — Amer. J. Bot.82: 266–275.Google Scholar
  48. Shapiro, D. R., Tewari, K. K., 1986: Nucleotide sequences of transfer RNA genes in thePisum sativum chloroplast DNA. — Pl. Molec. Biol.6: 1–12.Google Scholar
  49. Smith, J. F., Kress, W. J., Zimmer, E. A., 1993: Phylogenetic analysis of theZingiberales based onrbcL sequences. — Ann. Missouri Bot. Gard.80: 620–630.Google Scholar
  50. Soltis, D. E., Morgan, D. R., Grable, A., Soltis, P. S., Kuzoff, R., 1993: Molecular systematics ofSaxifragaceae sensu stricto. — Amer. J. Bot.80: 1056–1081.Google Scholar
  51. , 1995: Relationships and evolution ofHydrangeaceae based onrbcL sequence data. — Amer. J. Bot.82: 504–514.Google Scholar
  52. Stebbins, G. L. jr, 1953: Subfamilial nomenclature ofCompositae. — Taxon12: 229–235.Google Scholar
  53. Steele, K. P., Vilgalys, R., 1994: Phylogenetic analyses ofPolemoniaceae using nucleotide sequences of the plastid genematK. — Syst. Bot.19: 126–142.Google Scholar
  54. Sventenius, E. R. S., 1960: Additamentum ad floram Canariensem. — Madrid, Spain: Instituto Nacional de Investigaciones Agronómicas Ministerio de Agricultura.Google Scholar
  55. Swofford, D. L., 1993: PAUP: Phylogenetic analysis using parsimony. Version 3.1.1. — Washington, D.C.: Smithsonian Institution.Google Scholar
  56. Whitton, J., Wallace, R. S., Jansen, R. K., 1995: Phylogenetic relationships and patterns of character change in the tribeLactuceae (Asteraceae) based on chloroplast DNA restriction site variation. — Canad. J. Bot.73: 1058–1073.Google Scholar
  57. Wolfe, K. H., Morden, C. W., Palmer, J. D., 1992: Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. — Proc. Natl. Acad. Sci. USA 98: 10648–10652.Google Scholar
  58. Xiang, Q.-Y., Soltis, D. E., Morgan, D. R., Soltis, P. S., 1993: Phylogenetic relationships ofCornus L. sensu lato and putative relatives inferred fromrbcL sequence data. — Ann. Missouri Bot. Gard.80: 723–734.Google Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • Seung-Chul Kim
    • 1
  • Daniel J. Crawford
    • 1
  • Robert K. Jansen
    • 2
  • Arnoldo Santos-Guerra
    • 3
  1. 1.Department of Plant BiologyThe Ohio State UniversityColumbusUSA
  2. 2.Department of Botany and Institute of Cell and Molecular BiologyThe University of TexasAustinUSA
  3. 3.Jardín de Aclimatación de La OrotavaPuerto de la Cruz, TenerifeSpain

Personalised recommendations