Plant Systematics and Evolution

, Volume 147, Issue 1–2, pp 63–78 | Cite as

The relation between pollen exine sculpturing and self-incompatibility mechanisms

  • Michael S. Zavada


In angiosperm pollen the reticulate-perforate exine sculpturing is associated with sporophytic self-incompatibility (S.S.I.) and imperforate and microperforate exine sculpturing is associated with gametophytic self-incompatibility. The earliest unequivocal angiosperm pollen conforms to exine morphology of pollen from plants with S.S.I. The orgin of S.S.I. is hypothesized to have coincided with the appearance of what is now the earliest recognizable angiosperm pollen. Other angiosperm characteristics correlated with S.I., functional stigmatic areas, large showy flowers (or aggregated inflorescences), and passive seed dispersal, provide some insight into the biological aspects of the earliest angiosperms.

Key words

Angiosperms Exine morphology origin of sporophytic self-incompatibility palynology pollen wall 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Andersen, S. T., Bertelsen, F., 1972: Scanning electron microscope studies of pollen of cereals and other grasses. — Grana12, 79–86.Google Scholar
  2. Anderson, G. J., Gensel, P. G., 1976: Pollen morphology and systematics ofSolanum sect.Basarthrum. — Pollen Spores18, 533–552.Google Scholar
  3. Baker, H. G., Hurd, P. D., 1968: Intrafloral ecology. — Ann. Rev. Entomol.13, 385–414.Google Scholar
  4. Beach, J. H., Kress, W. J., 1980: Sporophyte vs. gametophyte: a note on the origin of self-incompatibility in flowering plants. — Syst. Bot.5, 1–5.Google Scholar
  5. Bolick, M. R., 1981: Mechanics as an aid to interpreting pollen structure and function. — Rev. Paleobot. Palynol.35, 61–79.Google Scholar
  6. Brenner, G. J., 1976: Middle Cretaceous floral provinces and the early migration of angiosperms. — InBeck, C. B., (Ed.): The Origin and Early Evolution of the Angiosperms, pp. 23–44. — New York: Columbia Univ. Press.Google Scholar
  7. Brewbaker, J. L., 1957: Pollen cytology and self-incompatibility systems in plants. — J. Heredity48, 271–277.Google Scholar
  8. —, 1959: Biology of the angiosperm pollen grain. — Ind. J. Genet. Plant Breed.19, 121–133.Google Scholar
  9. Brown, R., 1956: Palm-like plants from the Dolores Formation (Triassic), southwestern Colorado. — U.S. Geol. Surv. Prof. Pap.274-H, 205–209.Google Scholar
  10. Burger, W. C., 1981: Why are there so many kinds of flowering plants? — Bioscience31, 572–580.Google Scholar
  11. Chaloner, W. G., 1976: The evolution of adaptive features in fossil exines. — In:Ferguson, I. K., Muller, J., (Eds.): The Evolutionary Significance of the Exine, p. 1–11. London: Academic Press.Google Scholar
  12. Clarke, G. C. S., 1975: Irregular pollen grains in someHypericum species. — Grana15, 117–125.Google Scholar
  13. Crepet, W. L., 1974: Investigations of North American Cycadeoids: The reproductive biology ofCycadeoidea. — Paleontographica148B, 144–159.Google Scholar
  14. —, 1979: Insect pollination: A paleontological perspective. — Bioscience29, 102–108.Google Scholar
  15. —, 1983: The role of insect pollination in the origin of the angiosperms. — InLes Real (Ed.): Pollination Biology. — New York: Academic Press.Google Scholar
  16. Crowe, L. K., 1964: The evolution of outbreeding in plants. I. Angiosperms. — Heredity19, 435–457.Google Scholar
  17. DeNettancourt, D., 1977: Incompatibility in angiosperms. — Berlin: Springer-Verlag.Google Scholar
  18. Dickinson, H. G., Lewis, D., 1975: Interaction between the pollen grain coating and the stigmatic surface during compatible and incompatible interspecific pollinations inRaphanus. In:Duckett, J. C., Racey, P. A., (Eds.): The Biology of the Male Gamete, Suppl.1, pp. 165–175. — Biol. J. Linn. Soc.7.Google Scholar
  19. Dickison, W. C., 1979: A survey of pollen morphology of theConnaraceae. — Pollen Spores21, 31–79.Google Scholar
  20. Dilcher, D. L., 1979: Early angiosperm reproduction: An introductory report. — Rev. Paleobot. Palynol.27, 291–328.Google Scholar
  21. Doyle, J. A., 1969: Cretaceous angiosperm pollen of the Atlantic Coastal Plain and its evolutionary significance. — J. Arnold Arboretum30, 1–35.Google Scholar
  22. —, 1973: The monocotyledons: Their evolution and comparative biology. V. Fossil evidence on the early evolution of monocotyledons. — Quart. Rev. Biol.48, 399–413.Google Scholar
  23. Doyle, J. A., Biens, P., Doerenkamp, A., Jardin, S., 1977: Angiosperm pollen from the pre-Albian Lower Cretaceous of equatorial Africa. — Bull. Cent. Rech. Explor-prod. Elf-Aquitaine1, 451–473.Google Scholar
  24. —, 1982:Afropollis, a new genus of early angiosperm pollen, with notes on the Cretaceous palynostratigraphy and paleoenvironments of Northern Gondwana. — Bull. Cent. Rech. Explorprod. Elf-Aquitaine6, 39–117.Google Scholar
  25. Doyle, J. A., Hickey, L. J., 1976: Pollen and leaves from the mid-Cretaceous Potomac Group and their bearing on early angiosperm evolution. — InBeck, C. B., (Ed.): The Origin and Early Evolution of the Angiosperms, pp. 139–206. — New York: Columbia Univ. Press.Google Scholar
  26. —, 1976: Observations on exine structure ofEucommiidites and Lower Cretaceous angiosperm pollen. — Pollen Spores27, 429–486.Google Scholar
  27. East, E. M., 1940: The distribution of self-sterility in the flowering plants. — Proced. Amer. Phil. Soc.82, 449–517.Google Scholar
  28. Erde, F., 1981: Key for northwest European Rosaceae pollen. — Grana20, 101–118.Google Scholar
  29. Erdtman, G., 1952: Pollen Morphology and Plant Taxonomy. Angiosperms. — Stockholm: Almqvist and Wiksell.Google Scholar
  30. Foster, C. B., Price, P. L., 1982: Exine intrastructure ofPraecolpatites sinuosus (Balm & Hennely)Bharadwaj & Srivastava 1969 andMarsupipollenites triradiatus Balm & Hennely 1956. — The Paleobotanist28-29, 177–187.Google Scholar
  31. Gillissen, L. J. W., Brantjes, N. B. M., 1978: Function of the pollen coat in different stages of the fertilization process. — Acta. Bot. Neerl.27, 205–212.Google Scholar
  32. Givnish, T. J., 1982: Outcrossing versus ecological constraints in the evolution of dioecy. — Amer. Nat.119, 849–865.Google Scholar
  33. Grant, V., 1958: The regulation of recombination in plants. — Cold Spring Harbor Symp. Quant. Biol.23, 337–363.PubMedGoogle Scholar
  34. Heiser, C. B., 1962: Some observations on pollination and compatibility in Magnolia. — Proc. Ind. Acad. Sci.72, 256–266.Google Scholar
  35. Heusser, C. J., 1971: Pollen and Spores of Chile. — Tucson: Univ. Arizona Press.Google Scholar
  36. Heslop-Harrison, J., 1968: Tapetal origin of pollen-coat substances inLilium. — New Phytol.67, 779–786.Google Scholar
  37. —, 1975: Incompatibility and the pollen-stigma interaction. — Ann. Rev. Pl. Physiol.26, 403–425.Google Scholar
  38. —, 1973: Pollen wall proteins. “Gametophytic” and “Sporophytic” fractions in the pollen walls of theMalvaceae. — Ann. Bot.37, 403–412.Google Scholar
  39. Hubbell, S. P., 1979: Tree dispersion, abundance, and diversity in a tropical dry forest. — Science203, 1299–1309.Google Scholar
  40. Köhler, E., Lange, E., 1979: A contribution to distinguishing cereal from wild grass pollen by LM and SEM. — Grana18, 133–140.Google Scholar
  41. Krassilov, V. A., 1975:Dirhopalastachyaceae—a new family of proangiosperms and its bearing on the problem of angiosperm ancestry. — Palaeontographica (Abt. 13)153, 100–110.Google Scholar
  42. —, 1977: The origin of angiosperms. — Bot. Rev.43, 143–176.Google Scholar
  43. Larsen, S. S., 1975: Pollen morphology of Thai species ofBauhinia (Caesalpinaceae). — Grana14, 114–131.Google Scholar
  44. Lewis, W. H., 1965: Pollen morphology and evolution inHedyotis subgen.Edrisia (Rubiaceae). Amer. J. Bot.52, 257–264.Google Scholar
  45. Melville, R., 1981: Surface tension, diffusion, and the evolution and morphogenesis of pollen aperture patterns. — Pollen Spores23, 179–203.Google Scholar
  46. Muller, J., 1979: Form and function in angiosperm pollen. — Ann. Mo. Bot. Gard.66, 593–639.Google Scholar
  47. Nilsson, S., 1967: Pollen morphological studies in theGentianaceae-Gentianeae. — Grana7, 46–145.Google Scholar
  48. —, 1968: Pollen morphology in the genusMacrocarpaea (Gentianaceae) and its taxonomic significance. — Svensk Bot. Tidsk.62, 338–364.Google Scholar
  49. —, 1970: Pollen morphological contributions to the taxonomy ofLisianthus L. s. lat. (Gentianaceae). — Svensk Bot. Tidsk.64, 1–43.Google Scholar
  50. Nowicke, J. W., Ridgeway, J. E., 1973: Pollen studies in the genusCordia (Boraginaceae). — Amer. J. Bot.60, 584–591.Google Scholar
  51. -Skvarla, J. J., 1977: Pollen morphology and the relationship ofPlumbaginaceae, Polygonaceae, andPrimulaceae to the OrderCentrospermae. — Smithson. Contrib. Bot., No.37.Google Scholar
  52. Pandey, K. K., 1958: On the time of S gene action. — Nature (London)181, 1220.Google Scholar
  53. —, 1960: Evolution of gametophytic and sporophytic systems of self-incompatibility in angiosperms. — Evolution14, 98.Google Scholar
  54. —, 1980: Evolution of incompatibility systems in plants: Origin of independent and complementary control of incompatibility in angiosperms. — New Phytol.84, 381–400.Google Scholar
  55. Payne, W. W., 1981: Structure and function in angiosperm pollen wall evolution. — Rev. Paleobot. Palynol.35, 39–59.Google Scholar
  56. Ridley, H. N., 1930: The dispersal of plants throughout the world. — Kent: Asford.Google Scholar
  57. Rogers, C. M., 1980: Pollen dimorphism in distylous species ofLinum sect.Linastrum (Linaceae). — Grana19, 19–20.Google Scholar
  58. Schweitzer, H. J., 1977: Die Rhaeto-jurassischen Floren des Iran und Afghanistans. 4. Die rätische ZwitterblüteIrania hermaphroditica nov. spec. und ihre Bedeutung für die Phylogenie der Angiospermen. — Palaeontographica (Abt. B)161, 98–145.Google Scholar
  59. Skvarla, J. J., Raven, P. H., Chissoe, W. F., Sharp, M., 1978: An ultrastructural study of viscin threads in Onagraceae pollen. Pollen Spores 20, 5–144.Google Scholar
  60. —, 1976: Ultrastructural survey ofOnagraceae pollen. — InFerguson, I. K., Muller, J., (Eds.): The Evolutionary Significance of the Exine, pp. 447–467. — Linn. Soc. Symp. Ser. No. 1. — London: Academic Press.Google Scholar
  61. Small, E., Bassett, I. J., Crompton, C. W., 1981: Pollen variation in the tribeTrigonelleae (Leguminosae) with special reference toMedicago. — Pollen Spores23, 295–230.Google Scholar
  62. Srivastava, S. K., 1977: Microspores from the Fredericksburg Group (Albian) of the southern United States. — Paleobiologie Continentale6, 1–119.Google Scholar
  63. Stanley, R. G., Linskens, H. F., 1974: Pollen Biology, Biochemistry, Management. — Berlin: Springer-Verlag.Google Scholar
  64. Stebbins, G. L., 1981: Why are there so many species of flowering plants? — Bioscience31, 573–577.Google Scholar
  65. Taylor, T. N., Levin, D. A., 1975: Pollen morphology ofPolemoniaceae in relation to systematics and pollination systems: Scanning electron microscopy. — Grana15, 91–112.Google Scholar
  66. Thomas, H. H., 1925: TheCaytoniales: A new group of angiospermous plants from the Jurassic rocks of Yorkshire. — Philos. Trans. R. Soc. London, Ser. B,213, 299–363.Google Scholar
  67. —, 1934: The nature and origin of the stigma. — New Phytol.33, 132–198.Google Scholar
  68. Tiffney, B. H., 1981: Diversity and major events in the evolution of land plants. — InNiklas, K. J., (Ed.): Paleobotany, Paleoecology, and Evolution, Vol.2, pp. 193–230. — New York: Praeger Press.Google Scholar
  69. —, 1983: A fossil noctuid moth egg from the Late Cretaceous of eastern North America. — Science219, 507–509.Google Scholar
  70. Ting, W. S., 1966: Pollen morphology ofOnagraceae. — Pollen Spores8, 9–36.Google Scholar
  71. van Balgooy, M. M. J., 1971: Plant geography of the Pacific. — Blumea (Suppl.)6, 1–22.Google Scholar
  72. Vulleumier, B. S., 1967: The origin and evolutionary development of heterostyly in the angiosperms. — Evol.21, 210–226.Google Scholar
  73. Walker, J. W., 1974a: Evolution of exine structure in pollen of primitive angiosperms. — Amer. J. Bot.61, 891–902.Google Scholar
  74. —, 1974b: Aperture evolution in the pollen of primitive angiosperms. — Amer. J. Bot.61, 1112–1137.Google Scholar
  75. -Walker, A. G., 1984: Same grain combined light, scanning electron, and transmission electron microscopy of Lower Cretaceous angiosperm pollen. — Ann. Mo. Bot. Gard. (in press).Google Scholar
  76. Walker, J. W., Brenner, G. J., Walker, A. G., 1983: Winteraceous pollen in the Lower Cretaceous of Israel: Early evidence of magnolialean angiosperm family. — Science220, 1273–1275.Google Scholar
  77. Watson, L., Bell, E. M., 1975: A surface-structural survey of some taxonomically diverse grass pollens. — Aust. J. Bot.23, 981–990.Google Scholar
  78. Weber, M. O., 1981: Pollen diversity and identification in somePlumbaginaceae. — Pollen Spores23, 321–348.Google Scholar
  79. Whitehouse, H. L. K., 1950: Multiple-allelomorph incompatibility of pollen and style in the evolution of the angiosperms. — Ann. Bot.14, 199–216.Google Scholar
  80. Xavier, K. S., Mildner, R. A., Rogers, C. M., 1980: Pollen morphology ofLinum sect.Linastrum (Linaceae). — Grana19, 183–188.Google Scholar
  81. Zavada, M. S., 1984: Angiosperm origins and evolution based on dispersed fossil pollen ultrastructure. Ann. Mo. Bot. Gard. (in press).Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Michael S. Zavada
    • 1
  1. 1.Department of BiologyIndiana UniversityBloomingtonUSA

Personalised recommendations