Plant Systematics and Evolution

, Volume 217, Issue 3–4, pp 245–257 | Cite as

Karyotype constancy and genome size variation in BulgarianCrepis foetida s. l. (Asteraceae)

  • Dessislava Dimitrova
  • Irma Ebert
  • Johann Greilhuber
  • Stefan Kozhuharov
Article

Abstract

Ten populations ofCrepis foetida from Bulgaria belonging to the three subspeciesfoetida, rhoeadifolia, andcommutata were analyzed karyologically using haematoxylin staining, Giemsa C-banding, fluorochrome banding, Ag-NOR staining, Feulgen cytophotometry (scanning densitometry and video-based image analysis), and propidium iodide flow cytometry. The quantitatively-evaluated karyotype structure was similar among all populations, with minor variation in a few intercalary sites only and in the amount of NOR-associated heterochromatin (satellites). In contrast to the karyotypic constancy the genome size ofC. foetida subsp.commutata was about 10% lower than those of the other two subspecies, which had similar genome sizes. The genome size measurements using three different methods resulted in highly correlated data. The genome size difference adds some weight to previous taxonomic opinions treatingC. foetida subsp.commutata at species level, asC. commutata.

Key words

Asteraceae Crepis foetida Subspecies idiograms haematoxylin staining Giemsa C-banding fluorochrome banding Ag-NOR staining genome size Feulgen densitometry propidium iodide flow cytometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babcock E. B. (1947a) The genusCrepis. 1: Taxonomy, phylogeny, distribution and evolution ofCrepis. Univ. Calif. Publ. Bot. 21: 1–197.Google Scholar
  2. Babcock E. B. (1947b) The genusCrepis. 2: Systematic treatment. Univ. Calif. Publ. Bot. 22: 199–1030.Google Scholar
  3. Babcock E. B., Cameron D. R. (1934) Chromosomes and phylogeny inCrepis, II: The relationships of one hundred eight species. Univ. Calif. Publ. Agric. Sci. 6: 287–324.Google Scholar
  4. Babcock E. B., Cave M. S. (1938) A study of intra- and interspecific relations ofCrepis foetida L. Z. Indukt. Abstammungs-Vererbungsl. 75: 124–160.Google Scholar
  5. Babcock E. B., Jenkins J. A. (1943) Chromosomes and phylogeny inCrepis, III: The relationships of one hundred and thirteen species. Univ. Calif. Publ. Agric. Sci. 18: 241–292.Google Scholar
  6. Babcock E. B., Navashin M. S. (1930) The genusCrepis. Bibliogr. Genet. 6: 1–90.Google Scholar
  7. Babcock E. B., Stebbins G. L., Jenkins J. A. (1942) Genetic evolutionary processes inCrepis. Amer. Naturalist 76: 337–363.Google Scholar
  8. Baden C. (1983) Chromosome numbers in some Greek angiosperms. Willdenowia 13: 325–336.Google Scholar
  9. Baranyi M., Greilhuber J. (1996) Flow cytometric and Feulgen densitometric analysis of genome size variation inPisum. Theor. Appl. Genet. 92: 297–307.Google Scholar
  10. Bartolo G., Brullo S., Pavone P. (1978) Numeri cromosomici per la flora Italiana: 484–493. Inform. Bot. Ital. 10: 64–80.Google Scholar
  11. Bennett M. D., Smith J. B. (1976) Nuclear DNA amounts in angiosperms. Philos. Trans. Ser. B 274: 227–274.Google Scholar
  12. Bloom S. E., Goodpasture C. (1976) An improved technique for selective silver staining of nucleolar organizer regions in human chromosomes. Human Genet. 34: 199–206.Google Scholar
  13. Bremer K. (1994)Asteraceae — cladistics and classification. Timber Press, Portland, OR.Google Scholar
  14. D'Ovidio R. (1986) Numeri cromosomici per la flora Italiana: 1082–1093. Inform. Bot. Ital. 18: 168–175.Google Scholar
  15. Greilhuber J. (1977) Nuclear DNA and heterochromatin contents in theScilla hohenackeri group,S. persica, andPuschkinia scilloides (Liliaceae). Plant Syst. Evol. 128: 243–257.Google Scholar
  16. Greilhuber J. (1988) ‘Self-tanning’ — a new and important source of stoichiometric error in cytophotometric determination of nuclear DNA content in plants. Plant Syst. Evol. 158: 87–96.Google Scholar
  17. Greilhuber J., Ebert I. (1994) Genome size variation inPisum sativum. Genome 37: 646–655.Google Scholar
  18. Greilhuber J., Ehrendorfer F. (1988) Karyological approaches to plant taxonomy. I.S.I. Atlas Sci., Animal Plant Sci. 1: 289–297.Google Scholar
  19. Greilhuber J., Obermayer R. (1997) Genome size and maturity group inGlycine max (soybean). Heredity 78: 547–551.Google Scholar
  20. Greuter W. (1975) First OPTIMA Meeting in Crete — September 1975. Guide to the excursions. Geneve.Google Scholar
  21. Ikeda H. (1988) Karyomorphological studies on the genusCrepis with special reference to C-banding pattern. J. Sci. Hiroshima Univ., Ser. B., Div. 2, Bot. 22: 65–117.Google Scholar
  22. Kamari G. (1976) Cytotaxonomic study of theCrepis neglecta complex in Greece. Ph.D. Thesis, University of Patras.Google Scholar
  23. Kamari G. (1992) Karyosystematic studies on threeCrepis species (Asteraceae) endemic to Greece. Plant Syst. Evol. 182: 1–19.Google Scholar
  24. Kamari G., Anagnostopoulos A. (1991) Mediterranean chromosome number reports 1 (1–6). Fl. Medit. 1: 224–229.Google Scholar
  25. Kiehn M., Vitek E., Hellmayr E., Walter J., Tschenett J., Justin C., Mann M. (1991) Beiträge zur Flora von Österreich: Chromosomenzählungen. Verh. Zool.-Bot. Ges. Österreich 128: 19–39.Google Scholar
  26. Kodama Y., Yoshida M. C., Sasaki M. (1980) An improved silver staining technique for nucleolus organizer regions by using nylon cloth. Jap. J. Human Genet. 25: 229–233.Google Scholar
  27. König C., Ebert I. (1997) Computer-aided quantitative analysis of banded karyotypes, exemplified in C-bandedHyacinthoides italica s.l. (Hyacinthaceae). Caryologia 50: 105–116.Google Scholar
  28. Kuzmanov B. (1975) Karyological study of BulgarianCompositae. III. In: Velchev V., Kuzmanov B., Palamarev E. (eds.) In honour of Acad. Daki Jordanov. Bulgarian Academy of Sciences, Sofia, pp. 49–60.Google Scholar
  29. Kuzmanov B., Kozhuharov S. (1970) IOPB chromosome number reports XXVI. Taxon 19: 265.Google Scholar
  30. Kuzmanov B., Nikolova V. (1977) IOPB chromosome number reports LVIII. Taxon 26: 559.Google Scholar
  31. Kuzmanov B., Nikolova V. (1980) IOPB chromosome number reports LXIX. Taxon 29: 715.Google Scholar
  32. Levan A., Fredga K., Sandberg A. A. (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52: 201–220.Google Scholar
  33. Loon J. C. van, Kieft B. (1980) IOPB chromosome number reports LXVIII. Taxon 29: 538–542.Google Scholar
  34. Loon J. C. van, Setten A. K. van (1982) IOPB chromosome number reports LXXVI. Taxon 31: 589–592.Google Scholar
  35. Luque T., Diaz Lifante Z. (1991) Chromosome number of plants collected during Iter Mediterraneum I in the SE of Spain. Bocconea 1: 303–364.Google Scholar
  36. Melander Y., Wingstrand K. G. (1953) Gomori's haematoxylin as a chromosome stain. Stain Technol. 28: 217.PubMedGoogle Scholar
  37. Montmollin B. de (1986) Etude cytotaxonomique de la flore de la Crete. III. Nombres chromosomiques. Candollea 41: 431–439.Google Scholar
  38. Nazarova E. A. (1984) Chromosome numbers in the Caucasian representatives of the familyAsteraceae, Brassicaceae, Fabaceae, Limoniaceae. Bot. Zhurn. (Moscow and Leningrad) 69: 972–975.Google Scholar
  39. Queiros M. (1973) Contribuicao para o conhecimento citotaxonomico dasSpermatophyta de Portugal. II.Compositae, Suppl. I. Bol. Soc. Brot. 47: 299–314.Google Scholar
  40. Rohlf F. J. (1992) BIOM. A package of statistical programs to accompany the next ‘Biometry’. Applied Biostatistics, New York.Google Scholar
  41. Rosenberg O. (1918) Chromosomenzahlen und Chromo-somendimensionen in der GattungCrepis. Arkiv Bot. 15: 1–16.Google Scholar
  42. Rostovtseva T. S. (1983) Chromosome numbers of some species of the familyAsteraceae II. Bot. Zhurn. (Moscow and Leningrad) 68: 660–664.Google Scholar
  43. Schwarzacher T., Ambros P., Schweizer D. (1980) Application of Giemsa banding to orchid karyotype analysis. Plant Syst. Evol. 134: 293–297.Google Scholar
  44. Schweizer D. (1973) Differential staining of plant chromosomes with Giemsa. Chromosoma 40: 307–320.Google Scholar
  45. Schweizer D. (1976) Reverse fluorescent chromosome banding with chromomycin and DAPI. Chromosoma 58: 307–324.PubMedGoogle Scholar
  46. Sell P. D. (1976)Crepis L. In: Tutin T. G., Heywood V. H., Burges N. A., Moore D. M., Valentine D. H., Walters S. M., Webb D. A. (eds.) Flora Europaea, 4. Cambridge University Press, Cambridge, pp. 344–357.Google Scholar
  47. Siljak-Yakovlev S. (1980) IOPB chromosome number reports LXVII. Taxon 29: 347.Google Scholar
  48. Siljak-Yakovlev S. (1981) IOPB chromosome number reports LXXIII. Taxon 30: 843–844.Google Scholar
  49. Siljak-Yakovlev S. (1982) IOPB chromosome number reports LXXVII. Taxon 31: 768.Google Scholar
  50. Siljak-Yakovlev S., Cartier D. (1979) Utilisation de la coloration differentielle au Giemsa dans l'analyse des caryotypes de quatreCrepis. Rev. Cytol. Biol. Vég. Botaniste 2: 13–20.Google Scholar
  51. Siljak-Yakovlev S., Cartier D. (1982) Comparative analysis of C-banding karyotypes inCrepis praemorsa subsp.praemorsa and subsp.dinarica. Plant Syst. Evol. 141: 85–90.Google Scholar
  52. Siljak-Yakovlev S., Cartier D. (1986) Heterochromatin patterns in some taxa ofCrepis praemorsa complex. Caryologia 39: 27–32.Google Scholar
  53. Strid A. (1971) Chromosome numbers of some Albanian angiosperms. Bot. Not. 124: 490–496.Google Scholar
  54. Strid A. (1980) IOPB chromosome number reports LXIX. Taxon 29: 709–710.Google Scholar
  55. Strid A., Franzen R. (1981) IOPB chromosome number reports LXVIII. Taxon 30: 829–842.Google Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • Dessislava Dimitrova
    • 1
  • Irma Ebert
    • 2
  • Johann Greilhuber
    • 2
  • Stefan Kozhuharov
    • 1
  1. 1.Institute of BotanyBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Institute of Botany of the University of ViennaViennaAustria

Personalised recommendations