Plant Systematics and Evolution

, Volume 131, Issue 3–4, pp 243–259 | Cite as

C-band distribution, DNA content and base composition inAdoxa moschatellina (Adoxaceae), a plant with cold-sensitive chromosome segments

  • Johann Greilhuber
Article

Abstract

The chromosomes ofAdoxa moschatellina (2n = 36, paleo-4x) contain mostly terminal, occasionally intercalary, negatively heteropycnotic cold-induced regions which correspond to all major C-bands including the satellites, as revealed by sequential analysis. Positively C-stained are also centromeres, the dotlike arms of the 7 telocentric chromosome pairs, and some very narrow intercalary bands; their cold-sensitivity is hardly traceable. There exists a fraction of condensed interphase chromatin, at least after chilling, which is virtually not C-banded (possibly condensed euchromatin).

The DNA amount is 14.3 pg (1 C). The heterochromatin content is 13.0%. The thermal melting profile (Tm corresponding to 38.6% GC) does not reveal a particular AT- or GC-rich fraction. Significantly, the heterochromatin respond to the Hy-banding procedure is neutral.

The distribution of cold-sensitive regions in plants was analysed with the “arm-frame method”: Intercalary positions, clearly, are not especially favoured regions. The obvious deficiency at centromeric positions may depend on the action of natural selection against mechanically labile centromeric regions.

Key words

Aaoxaceae Adoxa moschatellina Giemsa C-banding patterns cold-induced regions heterochromatin DNA content base composition telocentric chromosomes chromosome organization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barlow, P. W., 1977: Determinants of nuclear chromatin structure in angiosperms. — Ann. Sci. Nat., Bot. biol. vég., 12e sér.,18, 193–206.Google Scholar
  2. Baumann, T. W., 1971: Heterochromatin und DNS-Replikation beiScilla sibirica. — Exp. Cell Res.64, 323–330.Google Scholar
  3. Bennett, M. D., Smith, J. B., 1976: Nuclear DNA amounts in angiosperms. — Phil. Trans. Roy. Soc. London,B, 274, 227–274.Google Scholar
  4. Boothroyd, E. R., Lima-de-Faria, A., 1964: DNA synthesis and differential reactivity in the chromosomes ofTrillium at low temperature. — Hereditas52, 122–126.Google Scholar
  5. Darlington, C. D., La Cour, L. F., 1938: Differential reactivity of the chromosomes. — Ann. Bot.2, 615–625.Google Scholar
  6. , 1940: Nucleic acid starvation of chromosomes inTrillium. — J. Genet.40, 185–212.Google Scholar
  7. Delay, C., 1946/48: Recherches sur la structure des noyaux quiescents chez les phanérogames. — Rev. Cyt. Cytophysiol. Vég.9, 169–223,10, 103–229.Google Scholar
  8. Dyer, A. F., 1963: Allocyclic segments of chromosomes and the structural heterozygosity that they reveal. — Chromosoma (Berl.)13, 545–576.Google Scholar
  9. Fedorov, A. A. (Ed.), 1969: Chromosome numbers of flowering plants. — Leningrad: Akademija Nauka SSSR.Google Scholar
  10. Geitler, L., 1940: Temperaturbedingte Ausbildung von Spezialsegmenten an Chromosomenenden. — Chromosoma1, 554–561.Google Scholar
  11. Greilhuber, J., 1974: Hy-banding: A new quick technique for heterochromatin staining in plant chromosomes. — Naturwiss.61, 170–171.Google Scholar
  12. , 1975: Heterogeneity of heterochromatin in plants: Comparison of Hyand C-bands inVicia faba. — Pl. Syst. Evol.124, 139–156.Google Scholar
  13. , 1976: C-banded karyotypes in theScilla hohenackeri group,S. persica, andPuschkinia (Liliaceae). — Pl. Syst. Evol.126, 149–188.Google Scholar
  14. , 1978: Quantitative analyses of C-band karyotypes, and systematics in the cultivated species of theScilla siberica group (Liliaceae). — Pl. Syst. Evol.129, 63–109 (1978).Google Scholar
  15. Hara, H., 1956: Contributions to the study of vegetations in the Japanese plants closely related to those of Europe or North America. Part 2. — J. Fac. Sci. Univ. Tokyo, sect. III, Bot.,6, 343–391.Google Scholar
  16. La Cour, L. F., 1951: Heterochromatin and the organisation of nucleoli in plants. — Heredity5, 37–50.Google Scholar
  17. , 1974: Fine structure and staining behaviour of heterochromatic segments in two plants. — J. Cell Sci.14, 1–17.Google Scholar
  18. Levan, A., 1942: Studies on the meiotic mechanism of haploid rye. — Hereditas28, 177–211.Google Scholar
  19. Lima-de-Faria, A., 1976: The chromosome field. III. The regularity of distribution of cold-induced regions. — Hereditas83, 139–152.Google Scholar
  20. Mandel, M., Marmur, J., 1968: Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. Methods of Enzymology12 B, 195–206.Google Scholar
  21. Marks, G. E., 1975: The Giemsa-staining centromeres ofNigella damascena. — J. Cell Sci.18, 19–25.Google Scholar
  22. Marmur, J., 1961: A procedure for the isolation of DNA from microorganisms. — J. Molec. Biol.3, 208–218.Google Scholar
  23. Mechelke, F., 1955: Temperaturbedingte Chromosomensegmentierung bei Sommer- und Wintergersten. — Kulturpflanze3, 127–135.Google Scholar
  24. Noguchi, J., Kawano, S., 1974: Brief notes on the chromosomes of some Japanese plants. — J. Jap. Bot.49, 76–86.Google Scholar
  25. Pätau, K., 1952: Absorption microspectrophotometry in irregularly shaped objects. — Chromosoma5, 341–362.Google Scholar
  26. Schweizer, D., 1973a: Vergleichende Untersuchungen zur Längsdifferenzierung der Chromosomen vonVicia faba L. — Verhandl. Naturf. Ges. Basel83, 1–75.Google Scholar
  27. , 1973b: Differential staining of plant chromosomes with Giemsa. — Chromosoma (Berl.)40, 307–320.Google Scholar
  28. , 1976: Giemsa banded karyotypes, systematics, and evolution inAnacyclus (Asteraceae-Anthemideae). — Pl. Syst. Evol.126, 107–148.Google Scholar
  29. Tschermak-Woess, E., 1963: Strukturtypen der Ruhekerne von Pflanzen und Tieren. ProtoplasmatologiaV/1. — Wien: Springer.Google Scholar
  30. Utsumi, S., Takehisa, S., 1974: Heterochromatin differentiation inTrillium kamtschaticum by ammoniacal silver reaction. — Exp. Cell Res.86, 398–401.Google Scholar
  31. van't Hof, J., Sparrow, A. H., 1963: A relationship between DNA content, nuclear volume, and minimum mitotic cycle time. — Proc. Nat. Acad. Sci. U.S.A.49, 897–902.Google Scholar
  32. Vosa, C. G., 1976: Chromosome banding patterns in cultivated and wild barleys (Hordeum spp.). — Heredity37, 395–403.Google Scholar
  33. Wilson, G. B., Boothroyd, E. R., 1944: Temperature-induced differential contraction in the somatic chromosomes ofTrillium erectum L. — Can. J. Res.22, 105–119.Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Johann Greilhuber
    • 1
  1. 1.Institut für BotanikUniversity WienWienAustria

Personalised recommendations