Advertisement

Plant Systematics and Evolution

, Volume 127, Issue 2–3, pp 139–170 | Cite as

Genetic variation inLycopersicon pimpinellifolium: Evidence of evolutionary change in mating systems

  • Charles M. Rick
  • Jon F. Fobes
  • Miguel Holle
Article

Abstract

L. pimpinellifolium is a highly heterogeneous species, exhibiting pronounced trends from one end of its linear distribution to the other in nearly every studied genetic locus. Drastic differences between populations were also detected in genetic variability and rates of outcrossing. Highly significant positive correlations exist in every possible comparison between flower size, degree of stigma exsertion, heterozygosity, and allelic polymorphism. The hypothesis most compatible with observations proposes that the very uniform, highly self-pollinated biotypes originated from the more primitive, more variable, facultatively allogamous forms.

Key words

Lycopersicon pimpinellifolium Solanaceae Allozymes clinal variation electrophoresis evolution of mating systems heterozygote advantage isozymes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allard, R. W., andKahler, A. L., 1971: Allozyme polymorphisms in plant populations. Stadler Symposia3, 9–24.Google Scholar
  2. —, andWeir, B. S., 1972: Analysis of complex allozyme polymorphisms in a barley population. Genetics72, 489–503.Google Scholar
  3. Ayala, F. J. (Ed.), 1975: Molecular Evolution. Sunderland, Mass., U.S.A.: Sinauer Associates, Inc.Google Scholar
  4. Barton, D. W., Butler, L., Jenkins, J. A., Rick, C. M., andYoung, P. A., 1955: Rules for nomenclature in tomato genetics. J. Hered.46, 22–26.Google Scholar
  5. Brewer, G. J., 1970: An Introduction to Isozyme Techniques. New York: Academic Press.Google Scholar
  6. Clayberg, C. D., Butler, L., Rick, C. M., andYoung, P. A., 1960: Second list of known genes in the tomato. J. Hered.51, 167–174.Google Scholar
  7. —, andRobinson, R. W., 1966: Third list of known genes in the tomato. J. Hered.57, 189–196.Google Scholar
  8. Fobes, J. F., andPaige, D. F., 1975: Refinements in starch-gel electrophoresis for genetic screening of horticultural materials: application to nematode testing ofLycopersicon esculentum. Hort Science10, 313.Google Scholar
  9. Humphrey, L. M., 1937: A cytological and morphological analysis of tomato species. Cytologia8, 306–318.Google Scholar
  10. Jain, S. K., andMarshall, D. R., 1967: Population studies in predominantly self-pollinating species. X. Variation in natural populations ofAvena fatua andAvena barbata. Amer. Nat.101, 19–34.Google Scholar
  11. Kahler, A. L., andAllard, R. W., 1970: Genetics of isozyme variants in barley. I. Esterases. Crop Sci.10, 444–448.Google Scholar
  12. Marshall, D. R., andAllard, R. W., 1970: Maintenance of isozyme polymorphisms in natural populations ofAvena barbata. Genetics66, 393–399.Google Scholar
  13. Muller, C. H., 1940: A revision of the genusLycopersicon. U.S. Dept. Agr. Misc. Publ. 382.Google Scholar
  14. Rick, C. M., 1950: Pollination relations ofLycopersicon esculentum in native and foreign regions. Evolution4, 110–122.Google Scholar
  15. —, 1958: The role of natural hybridization in the derivation of cultivated tomatoes of western South America. Econ. Bot.12, 346–367.Google Scholar
  16. —, 1976: Tomato,Lycopersicon esculentum (Solanaceae). InSimmonds, N. W. (Ed.): Evolution of Crop Plants, 268–273. London: Longman.Google Scholar
  17. —, andFobes, J. F., 1975a: Allozymes of Galápagos tomatoes: polymorphism, geographic distribution, and affinities. Evolution29, 443–457.Google Scholar
  18. —, 1975b: Allozyme variation in the cultivated tomato and closely related species. Bull. Torrey Bot. Club102, 376–384.Google Scholar
  19. —, 1976: Peroxidase complex with concomitant anodal and cathodal variation in red-fruited tomato species. Proc. Natl. Acad. Sci.73, 900–904.Google Scholar
  20. —, andHolle, M., 1976: Genetic and biosystematic studies on two new sibling species ofLycopersicon from interandean Perú. Theor. Appl. Genetics47, 55–68.Google Scholar
  21. —, andFobes, J. F., 1974: Four peroxidase loci in redfruited tomato species: genetics and geographic distribution. Proc. Natl. Acad. Sci.71, 835–839.Google Scholar
  22. Stebbins, G. L., 1957: Self-fertilization and population variability in the higher plants. Amer. Natur.91, 337–354.Google Scholar
  23. Stevenson, F. J., andJones, H. A., 1953: Some sources of resistance in crop plants. U.S. Dept. Agr. Yearbook1953, 192–216.Google Scholar
  24. Stubbe, H., 1960: Mutanten der WildtomateLycopersicon pimpinellifollium I. (Jusl.)Mill. Kulturpflanze8, 110–137.Google Scholar
  25. —, 1961: Mutanten der WildtomateLycopersicon pimpinellifolium (Jusl.)Mill. II. Kulturpflanze9, 58–87.Google Scholar
  26. —, 1965: Mutanten der WildtomateLycopersicon pimpinellifolium (Jusl.)Mill. III. Kulturpflanze13, 517–544.Google Scholar
  27. —, 1972: Mutanten der WildtomateLycopersicon pimpinellifolium (Jusl.)Mill. IV. Kulturpflanze19, 231–263.Google Scholar
  28. Wall, J. R., andWall, S. W., 1975: Isozyme polymorphisms in the study of evolution in thePhaseolus vulgaris—P. coccineus complex of Mexico. InMarkert, C. (Ed.): The Isozymes4, 287–305. New York: Academic Press.Google Scholar
  29. Weberbauer, A., 1945: El mundo vegetal de los Andes Peruanos. Lima: Ministerio de Agricultura.Google Scholar
  30. Wright, S., 1922: Coefficients of inbreeding and relationship. Amer. Natur.56, 330–338.Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Charles M. Rick
    • 1
  • Jon F. Fobes
    • 1
  • Miguel Holle
    • 2
  1. 1.Department of Vegetable CropsUniversity of CaliforniaDavisUSA
  2. 2.Departamento de HorticulturaUniversidad Nacional AgrariaLimaPerú

Personalised recommendations