Plant Systematics and Evolution

, Volume 144, Issue 3–4, pp 209–220

Inferred chromosome morphology of the ancestral genome ofTriticum

  • J. Dvořák
  • P. E. McGuire
  • S. Mendlinger


The lengths of the A, B, and D genomes of common wheat,Triticum aestivum, were measured from the karyotype. Relative to the B genome, standardized as length 1.000, the lengths of the A and D genomes were 0.835 and 0.722, respectively. The lengths of the chromosome arms in the A and D genomes were then multiplied by the appropriate constants so that the total lengths of each genome also equalled 1.000. These calculations revealed that homoeologous chromosomes in wheat, with a few exceptions, have similar sizes and arm ratios. The arm lengths of the three homoeologues in each homoeologous group were then averaged. These average chromosomes turned out to be remarkably similar, in size and arm ratio, to their homoeologues in the E genome ofElytrigia elongata. This evidence and data on cross-compatibility and morphological characteristics suggested that the genusTriticum is a result of adaptive radiation from the perennial genusElytrigia, specifically from the complex of species possessing the E genome or one closely related to it.

Key words

Angiosperms Poaceae Triticum Elytrigia wheat Evolution genome karyotype 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alonso, L. C., Kimber, G., 1980: A hybrid between diploidAgropyron junceum andTriticum aestivum. — Cer. Res. Commun.8, 355–358.Google Scholar
  2. Cauderon, Y., 1958: Étude cytogénétique desAgropyrum français et hybrides avec les blés. — Ann. Amélior. Plant.8, 389–567.Google Scholar
  3. Chapman, V., Miller, T. E., Riley, R., 1976: Equivalence of the A genome of bread wheat and that ofTriticum urartu. — Genet. Res., Camb.27, 69–76.Google Scholar
  4. —, 1966: The allocation of the chromosomes ofTriticum aestivum to the A and B genomes and evidence on genome structure. — Can. J. Gen. Cytol.8, 57–63.Google Scholar
  5. Chennaveeraiah, M. S., 1960: Karyomorphologic and cytotaxonomic studies inAegilops. — Acta Horti Gotob.23, 85–178.Google Scholar
  6. Dewey, D. R., 1969: Synthetic hybrids ofAgropyron caespitosum ×Agropyron spicatum, Agropyron canium, andAgropyron yezoense. — Bot. Gaz.130, 110–116.Google Scholar
  7. —, 1974: Hybrids and induced amphiploids ofElymus canadensis ×Agropyron libanoticum. — Amer. J. Bot.61, 181–187.Google Scholar
  8. —, 1975: Genome relations of diploidAgropyron libanoticum with diploid and autotetraploidAgropyron stipifolium. — Bot. Gaz.136, 116–121.Google Scholar
  9. —, 1981: Cytogenetics ofAgropyron ferganense and its hybrids with six species ofAgropyron, Elymus, andSitanion. — Amer. J. Bot.68, 216–255.Google Scholar
  10. —, 1982: Genomic and phylogenetic relationships among North American perennialTriticeae. — InEstes, J. E., Tyrl, R. J., Brunken, J. N., (Eds.): Grasses and Grasslands Systematics and Ecology, 50–88. — Univ. Okla. Press, Norman, Okla.Google Scholar
  11. Dvořák, J., 1971: Hybrids between a diploidAgropyron elongatum andAegilops squarrosa. — Can. J. Genet. Cytol.13, 90–94.Google Scholar
  12. —, 1976: The relationship betweenTriticum urartu and the A and B genomes ofTriticum aestivum. — Can. J. Genet. Cytol.18, 371–377.Google Scholar
  13. —, 1979: Metaphase I pairing frequencies of individualAgropyron elongatum chromosome arms withTriticum chromosomes. — Can. J. Genet. Cytol.21, 243–254.Google Scholar
  14. —, 1980: Homoeology betweenAgropyron elongatum chromosomes andTriticum aestivum chromosomes. — Can. J. Genet. Cytol.22, 237–259.Google Scholar
  15. —, 1981a: Chromosome differentiation in polyploid species ofElytrigia, with special reference to the evolution of diploid-like chromosome pairing in polyploid species. — Can. J. Genet. Cytol.23, 287–303.Google Scholar
  16. —, 1981b: Genome relationships amongElytrigia (=Agropyron)elongata, E. stipifolia, “E. elongata 4 x”,E. caespitosa, E. intermedia, and “E. elongata 10 x”. — Can J. Genet. Cytol.23, 481–492.Google Scholar
  17. —, 1983: The origin of wheat chromosomes 4A and 4B and their genome reallocation. — Can. J. Genet. Cytol.25, 210–214.Google Scholar
  18. —, 1982: Chromosomal and nucleotide sequence differentiation in genomes of polyploidTriticum species. — Theor. Appl. Genet.63, 349–360.Google Scholar
  19. —, 1974: Disomic and ditelosomic additions of diploidAgropyron elongatum chromosomes toTriticum aestivum. — Can. J. Genet. Cytol.16, 399–417.Google Scholar
  20. —, —, 1977: Homoeologous chromatin exchange in a radiation-induced gene transfer. — Can. J. Genet. Cytol.19, 123–131.Google Scholar
  21. Evans, L. E., 1962: Karyotype analysis and chromosome designations for diploidAgropyron elongatum (Host) P. B. — Can. J. Genet. Cytol.4, 267–271.Google Scholar
  22. Flavell, R. B., O'Dell, M., 1976: Ribosomal RNA genes on homologous chromosomes of groups 5 and 6 in hexaploid wheat. — Heredity37, 377–385.Google Scholar
  23. —, —, 1979: The genetic control of nucleolus formation in wheat. — Chromosoma71, 135–152.Google Scholar
  24. Gaul, H., 1953: Genomanalytische Untersuchungen beiTriticum ×Agropyron intermedium unter Berücksichtigung vonSecale cereale ×A. intermedium. — Z. Indukt. Abstamm. Vererb.85, 505–546.Google Scholar
  25. Gerlach, W., Appels, R., Dennis, E. S., Peacock, W. J., 1979: Evolution and analysis of wheat genomes using highly repeated DNA sequences, 81–91. — Proc. 5th Int. Wheat Genet. Symp., New Delhi.Google Scholar
  26. Hart, G. E., Langston, P. J., 1977: Chromosomal location and evolution of isozyme structural genes in hexaploid wheat. — Heredity39, 263–277.Google Scholar
  27. —, 1983: Chromosomal locations of elevenElytrigia elongata (=Agropyron elongatum) isozyme structural genes. — Genet. Res., Camb.,41, 181–202.Google Scholar
  28. Heneen, W. K., Runemark, H., 1972: Chromosomal polymorphism in isolated populations ofElymus (Agropyron) in the Aegean. I.Elymus striatulus sp. nov. — Bot. Not.125, 419–429.Google Scholar
  29. Iordansky, A. B., Zurabishvili, T. B., Badaev, N. S., 1978: Linear differentiation of cereal chromosomes. I. Common wheat and its supposed ancestors. — Theor. Appl. Genet.51, 145–152.Google Scholar
  30. Jenkins, B. C., Mochizuki, A., 1957: A new amphiploid from a cross betweenTriticum durum andAgropyron elongatum (2n = 14). — Wheat Inf. Serv.5, 15.Google Scholar
  31. Larsen, J., 1973: The role of chromosomal interchanges in the evolution of hexaploid wheat,Triticum aestivum. — Proc. 4th Int. Wheat Genet. Symp., Columbia, Missouri, pp. 87–93.Google Scholar
  32. Matsumura, S., Muramatsu, M., Sakamoto, 1958: Genome analysis inAgropyron, a genus related toTriticum. — Proc. 10th Int. Cong. Genet., Montreal2, 181–182.Google Scholar
  33. Östergren, G. A., 1940: A hybrid betweenTriticum turgidum andAgropyron junceum. — Hereditas26, 395–398.Google Scholar
  34. Peto, F. H., 1936: Hybridization ofTriticum andAgropyron. II. Cytology of the male parents and F1 generation. — Can. J. Res., Ser. C14, 203–214.Google Scholar
  35. Pienaar, R., de V., 1979: Meiotic association in aTriticum aestivum L. em.Thell ×Agropyron distichum (Thunb.)Beauv. hybrid. — Wheat Inf. Serv.49, 24–26.Google Scholar
  36. Sakamoto, S., 1973: Patterns of phylogenetic differentiation in the tribeTriticeae. — Seiken Zihô24, 11–31.Google Scholar
  37. Sapehin, A. A., 1935: Cytological investigation ofTriticum ×Agropyron hybrids. — Bot. Žurn.20, 119–125.Google Scholar
  38. Sears, E. R., 1954: The aneuploids of common wheat. — Mo. Agric. Exp. Sta. Res. Bull.572, 1–59.Google Scholar
  39. —, 1966: Nullisomic-tetrasomic combinations in hexaploid wheat. — In:Riley, R., Lewis, K. R., (Eds.): Chromosome Manipulations and Plant Genetics, 29–45. — Edinburgh: Oliver and Boyd.Google Scholar
  40. Sears, L. M. S., 1979: The telocentric chromosomes of common wheat. p. 389–407. — Proc. 5th Int. Wheat Genet. Symp., New Delhi.Google Scholar
  41. Senjaninova-Korczagina, M., 1932: Karyo-systematical investigation of the genusAegilops L. — Bull. Appl. Bot., Genet., Plant Breed. ser.II, 1, 1–90.Google Scholar
  42. Stebbins, G. L., 1958: Longevity, habitat, and release of genetic variability in the higher plants. — Cold Spring Harbor Symp. Quant. Biol.2, 365–378.Google Scholar
  43. —, 1953: Artificial and natural hybrids in theGramineae, tribeHordeeae. V. Diploid hybrids ofAgropyron. — Amer. J. Bot.40, 444–449.Google Scholar
  44. Wakar, B. A., 1935: Cytologische Untersuchung der ersten Generation der Weizen-Queckengrasbastarde. — Züchter7, 199–206.Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • J. Dvořák
    • 1
  • P. E. McGuire
    • 1
  • S. Mendlinger
    • 2
  1. 1.Department of Agronomy & Range ScienceUniversity of CaliforniaDavisUSA
  2. 2.Research and Development AuthorityBen Gurion UniversityBeer ShevaIsrael

Personalised recommendations