Plant Systematics and Evolution

, Volume 143, Issue 1–2, pp 117–131 | Cite as

Some features of heterochromatin in wildAllium species

  • Josef Loidl


Quantitatively evaluated C-banding karyograms are presented forAllium carinatum, A. carinatum ssp.pulchellum, andA. flavum of the sectionCodonoprasumReichenb. Accurate measurements revealed that constitutive heterochromatin (C-bands) is probably additional chromosomal material. The distribution of the C-heterochromatin follows the principle of the equilocal heterochromatin-distribution byHeitz (1933). Furthermore, the pattern shows a relationship to the relative arm-length of the chromosomes in the karyotype. Fluorochrome banding revealed various heterochromatintypes. The C-band patterns ofAllium cupani (sect.ScorodonKoch) andA. vineale (sect.Allium), which are also rich in heterochromatin, are described.

Key words

Liliaceae Alliaceae Allium carinatum A. flavum A. cupani A. vineale Heterochromatin C-band karyograms fluorochrome banding equilocal heterochromatin distribution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Árnason, Ú., 1974: Comparative chromosome studies in cetacea. — Hereditas77, 1–36.Google Scholar
  2. Ashley, T., Pocock, N., 1981: A proposed model of chromosomal organization in nuclei at fertilization. — Genetica55, 161–169.Google Scholar
  3. Badr, A., Elkington, T. T., 1977: Variation of Giemsa C-band and fluorochrome banded karyotypes, and relationships inAllium subgen.Molium. — Pl. Syst. Evol.128, 23–35.Google Scholar
  4. Baumberger, H., 1970: Chromosomenzahlbestimmungen und Karyotypanalysen bei den GattungenAnemone, Hepatica undPulsatilla. — Ber. Schweiz. Bot. Ges.80, 17–95.Google Scholar
  5. Beadle, G. W., 1932: A possible influence of the spindle fiber on crossing-over in Drosophila. — Proc. Natl. Acad. Sci. (Wash.)18, 160–165.Google Scholar
  6. Blakey, D. H., Vosa, C. G., 1981: Heterochromatin and chromosome variation in cultivated species ofTulipa, subg.Eriostemones (Liliaceae). — Pl. Syst. Evol.139, 47–55.Google Scholar
  7. —, 1982: Heterochromatin and chromosome variation in cultivated species ofTulipa, subg.Leiostemones (Liliaceae). — Pl. Syst. Evol.139, 163–178.Google Scholar
  8. Brutlag, D. L., 1980: Molecular arrangement and evolution of heterochromatic DNA. — Ann. Rev. Genet.14, 121–144.Google Scholar
  9. Cavalier-Smith, T., 1978: Nuclear volume control by nucleosceletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. — J. Cell Sci.34, 247–278.Google Scholar
  10. Cremer, T., Cremer, C., Baumann, H., Luedtke, E.-K., Sperling, K., Teuber, V., Zorn, C., 1982: Rabl's model of the interphase chromosome arrangement tested in Chinese hamster cells by premature chromosome condensation and laser-UV-microbeam experiments. — Hum. Genet.60, 46–56.Google Scholar
  11. Deumling, B., Greilhuber, J., 1982: Characterization of heterochromatin in different species of theScilla siberica group (Liliaceae) by in situ hybridization of satellite DNAs and fluorochrome banding. — Chromosoma (Berl.)84, 535–555.Google Scholar
  12. Doolittle, W. F., Sapienza, C., 1980: Selfish genes, the phenotype paradigm and genome evolution. — Nature284, 601–603.Google Scholar
  13. Dyer, A. F., 1963: Allocyclic segments of chromosomes and the structural heterozygosity that they reveal. — Chromosoma (Berl.)13, 545–576.Google Scholar
  14. Friebe, B., 1979: Chiasmabildung in normalen und mutierten Karyotypen vonVicia faba. — Biol. Zbl.98, 37–53.Google Scholar
  15. Greilhuber, J., Loidl, J., 1983: On regularities of C-banding patterns, and their possible cause. — InBrandham, P. E., Bennett, M. D., (Eds.): Kew Chromosome Conference II, 344. — London: George Allen & Unwin.Google Scholar
  16. Greilhuber, J., Speta, F., 1976: C-banded karyotypes in theScilla hohenackeri group,S. persica, andPuschkinia (Liliaceae). — Pl. Syst. Evol.126, 149–188.Google Scholar
  17. —, 1978: Quantitative analyses of C-banded karyotypes, and systematics in the cultivated species of theScilla siberica group (Liliaceae). — Pl. Syst. Evol.129, 63–109.Google Scholar
  18. Heitz, E., 1933: Die Herkunft der Chromocentren. — Planta18, 571–636.Google Scholar
  19. John, B., King, M., 1977: Heterochromatin variation inCryptobothrus chrysophorus. I. Chromosome differentiation in natural populations. — Chromosoma (Berl.)64, 219–239.Google Scholar
  20. —, 1980: Heterochromatin variation inCryptobothrus chrysophorus. III. Synthetic hybrids. — Chromosoma (Berl.)78, 165–186.Google Scholar
  21. —, 1979: Functional aspects of satellite DNA and heterochromatin. — Internat. Rev. Cyt.58, 1–114.Google Scholar
  22. Jones, G. H., 1978: Giemsa C-banding of rye meiotic chromosomes and the nature of “terminal” chiasmata. — Chromosoma (Berl.)66, 45–57.Google Scholar
  23. Jorgenson, K. F., van de Sande, J. H., Lin, C. C., 1978: The use of base pair specific DNA binding agents as affinity labels for the study of mammalian chromosomes. — Chromosoma (Berl.)68, 287–302.Google Scholar
  24. Kenton, A., 1978: Giemsa C-banding inGibasis (Commelinaceae). — Chromosoma (Berl.)65, 309–324.Google Scholar
  25. King, M., 1980: C-banding studies on Australian hylid frogs: secondary constriction structure and the concept of euchromatin transformation. — Chromosoma (Berl.)80, 191–217.Google Scholar
  26. —, 1980: Regularities and restrictions governing C-band variation in Acridoid grasshoppers. — Chromosoma (Berl.)76, 123–150.Google Scholar
  27. Klášterská, I., Natarajan, A. T., Ramel, C., 1974: Heterochromatin distribution and chiasma localization in the grasshopperBryodema tuberculata (Fabr.) (Acrididae). — Chromosoma (Berl.)44, 393–404.Google Scholar
  28. Linnert, G., 1955: Die Struktur der Pachytänchromosomen in Euchromatin und Heterochromatin und ihre Auswirkung auf die Chiasmabildung beiSalvia-Arten. — Chromosoma (Berl.)7, 90–128.Google Scholar
  29. Loidl, J., 1979: C-band proximity of chiasmata and absence of terminalisation inAllium flavum (Liliaceae). — Chromosoma (Berl.)73, 45–51.Google Scholar
  30. - 1981: Das Heterochromatin einigerAllium-Arten: Cytochemische Charakterisierung und cytogenetische Aspekte. — Thesis (Univ. of Vienna).Google Scholar
  31. —, 1982: Further evidence for a heterochromatin-chiasma correlation in someAllium-species. — Genetica60, 31–35.Google Scholar
  32. Marks, G. E., 1975: The Giemsa-staining centromeres ofNigella damascena. — J. Cell Sci.18, 19–25.Google Scholar
  33. Miklos, G. L. G., Nankivell, R. N., 1976: Telomeric satellite DNA functions in regulating recombination. — Chromosoma (Berl.)56, 143–167.Google Scholar
  34. Nagl, W., 1974: Role of heterochromatin in the control of cell cycle duration. — Nature249, 53–54.Google Scholar
  35. —, 1974: DNA content, heterochromatin, mitotic index, and growth in perennial and annualAnthemidae (Asteraceae). — Pl. Syst. Evol.123, 35–54.Google Scholar
  36. Orgel, L. E., Crick, F. H. C., 1980: Selfish DNA: the ultimate parasite. — Nature284, 604–607.Google Scholar
  37. Roberts, P. A., 1965: Difference in the behaviour of eu- and hetero-chromatin: crossing-over. — Nature205, 725–726.Google Scholar
  38. Schweizer, D., 1973: Vergleichende Untersuchungen zur Längsdifferenzierung der Chromosomen vonVicia faba L. — Verhandl. Naturf. Ges. Basel83, 1–75.Google Scholar
  39. —, 1976: Reverse fluorescent chromosome banding with chromomycin and DAPI. — Chromosoma (Berl.)58, 307–324.Google Scholar
  40. —, 1976: Giemsa banded karyotypes, systematics, and evolution inAnacyclus (Asteraceae-Anthemideae). — Pl. Syst. Evol.126, 107–148.Google Scholar
  41. —, 1976: Heterochromatin diversity inCymbidium and its relationship to differential DNA replication. — Exp. Cell Res.98, 411–423.Google Scholar
  42. Shaw, D. D., 1970: The supernumerary segment system ofStethophyma. 1. Structural basis. — Chromosoma (Berl.)30, 326–343.Google Scholar
  43. Southern, D. I., 1967: Pseudo-multiple formation as a consequence of prolonged non-homologous chromosome association inMetrioptera brachyptera. — Chromosoma (Berl.)21, 272–284.Google Scholar
  44. Tschermak-Woess, E., 1946: Über chromosomale Plastizität bei Wildformen vonAllium carinatum und anderenAllium-Arten aus den Ostalpen. — Chromosoma (Berl.)3, 66–87 (1950).Google Scholar
  45. Vosa, C. G., 1973a: The enhanced and reduced quinacrine fluorescence bands and their relationship to the Giemsa patterns inAllium flavum. — Nobel Symp. (Stockholm)23, 156–158.Google Scholar
  46. —, 1973b: Heterochromatin recognition and analysis of chromosome variation inScilla sibirica. — Chromosoma (Berl.)43, 269–278.Google Scholar
  47. —, 1976a: Heterochromatic banding patterns inAllium. II. Heterochromatin variation in species of thepaniculatum group. — Chromosoma (Berl.)57, 119–133.Google Scholar
  48. —, 1976b: Heterochromatic patterns inAllium. 1. The relationship between the species of thecepa group and its allies. — Heredity36, 383–392.Google Scholar
  49. White, M. J. D., 1954a: Animal Cytology and Evolution. 2nd ed. — Cambridge: University Press.Google Scholar
  50. —, 1954b: An extreme form of chiasma localization in a species ofBryodema (Orthoptera, Acrididae). — Evolution8, 350–358.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Josef Loidl
    • 1
  1. 1.Institute of Human GeneticsThe UniversityErlangenFederal Republic of Germany

Personalised recommendations