Plant Systematics and Evolution

, Volume 222, Issue 1–4, pp 225–242 | Cite as

Pollen morphological evolution in bat pollinated plants

  • A. Stroo


This study assesses to what extent bat pollination has acted as a selective force on pollen morphology. Earlier pollen studies have suggested convergent evolution of verrucate exine ornamentation. Furthermore pollen of bat pollinated plants has been reported to be bigger than that of plants pollinated by other means. The generality of these ideas is tested using a sample of 130 species of both bat pollinated plants and relatives with another mode of pollination. An analysis of pollen size, shape, aperture number and type, and ornamentation type of 35 plant groups in which a transition towards bat pollination occurred was performed and showed a significant effect for pollen size only. Bat pollinated plants have bigger pollen than their relatives. Pollen size was shown to correlate with style length. Pollen shape, aperture system and exine ornamentation are in general not very different in bat pollinated plants in comparison with their relatives. There is no consistent trend for rougher exines to be associated with bat pollination.

Key words

Pollen morphology chiropterophily exine ornamentation style length pollination syndromes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barth O. M. (1966) Estudos morfologicos dos polens en Caryocaraceae. Rodriguesia 25(37): 351–440.Google Scholar
  2. Baum D., Small R. L., Wendel J. F. (1998) Biogeography and floral evolution of Baobabs (Adansonia, Bombacaceae) as inferred from multiple data sets. Syst. Biol. 47: 181–207.Google Scholar
  3. Buurman J. (1977) Contribution to the pollenmorphology of the Bignoniaceae, with special reference to the tricolpate type. Pollen et Spores XIX (4): 447–519.Google Scholar
  4. Chaloner W. G. (1986) Electrostatic forces in insect pollination and their significance in exine ornament. In: Blackmore S., Ferguson I. K. (eds.) Pollen and spores, form and function. Linn. Soc. Symp. Ser. 12: 103–108.Google Scholar
  5. Chavez R. P. (1974) Observaciones en el polen de plantas con probable polinizacion quiropterofila. Anal. Escuela. nac. Cienc. biol. Mexico 21: 115–143.Google Scholar
  6. Cox P. A., Cromar S., Jarvis T. (1991) Underwater pollination, three-dimensional search, and pollen morphology: predictions from a supercomputer analysis. In: Blackmore S., Barnes S. H. (eds.) Pollen and Spores Patterns of Diversification. Systematics Assoc. Special vol. 44: 363–375.Google Scholar
  7. Crane P. R. (1986) Form and function in wind dispersed pollen. In: Blackmore S., Ferguson I. K. (eds.) Pollen and Spores Form and Function. Academic Press, London, pp. 179–202.Google Scholar
  8. Dobat K., Peikert-Holle T. (1985) Blüten und Fledermäuse. Waldemar Kramer, Frankfurt am Main.Google Scholar
  9. Faegri K., Van der Pijl, L. (1979) The principles of pollination biology. Pergamon Press, Oxford.Google Scholar
  10. Felsenstein J. (1985) Phylogenies and the comparative method. American Naturalist 125: 1–15.Google Scholar
  11. Ferguson I. K. (1984) Pollen morphology and biosystematics of the subfamily Papilionoideae (Leguminosae). In: Grant W. F. (ed.) Plant Biosystematics. Academic Press, Canada, pp. 377–394.Google Scholar
  12. Ferguson I. K. (1985) The role of pollen morphology in plant systematics. An. Asoc. Palinol. Leng. Esp. 2: 5–18.Google Scholar
  13. Ferguson I. K. (1990) Significance of some pollen morphological characters of the tribe Amorpheae and the genusMucuna (tribe Phaseoleae) in the biology and the systematics of the subfamily Papilionoideae (Leguminosae). Rev. Palaeobot. Palynol. 64: 129–136.Google Scholar
  14. Ferguson I. K., Pearce K. J. (1986) Observations on the pollen morphology of the genusBauhinia L. (Leguminosae: Caesalpinioideae) in the neotropics. In: Blackmore S., Ferguson I. K. (eds.) Pollen and Spores Form and Function. Academic Press, London, pp. 283–296.Google Scholar
  15. Ferguson I. K., Santisuk T. (1973) Notes on the pollen morphology of some asiatic Bignoniaceae. Kew Bull. 28(2): 187–194.Google Scholar
  16. Ferguson I. K., Skvarla J. J. (1982) Pollen morphology in relation to pollinators in Papilionoideae (Leguminosae). Bot. J. Lin. Soc. 84: 183–193.Google Scholar
  17. Graham A., Barker G., Da Silva M. F. (1980) Unique pollen types in the Caesalpinioideae (Leguminosae). Grana 19: 79–84.Google Scholar
  18. Graham A., Barker G. (1981) Palynology and Tribal Classification in the Caesalpinioideae. In: Polhill R. M., Raven P. H. (eds.) Advances in Legume Systematics Part 2. Royal Botanic gardens, Kew, pp. 801–834.Google Scholar
  19. Graham A., Graham S. A., Nowicke J. W., Patel V., Lee S. (1990) Palynology and systematics of the Lythraceae. III. generaPhysocalymma through Woodfordia, adenda, and conclusions. Amer. J. Bot. 77(2): 159–177.Google Scholar
  20. Grayum M. H. (1986) Correlations between pollination biology and pollen morphology in the Araceae, with some implications for angiosperm evolution. In: Blackmore S., Ferguson I. K. (eds.) Pollen and Spores Form and Function. Academic Press, London, pp. 313–327.Google Scholar
  21. Harvey P. H., Pagel M. D. (1991) The comparative method in evolutionary biology. Oxford University Press, Oxford.Google Scholar
  22. Hemsley A. R., Jenkins P. D., Collinson M. E., Vincent B. (1996) Experimental modelling of exine self-assembly. Bot. J. Linn. Soc. 121: 177–187.Google Scholar
  23. Herrera C. M. (1996) Floral traits and plant adaptation to insect pollinators: a devil's advocate approach. In: Lloyd D. G., Barrett S. C. H. (eds.) Floral biology: studies on floral evolution in animal-pollinated plants. Chapman & Hall, New York, pp. 65–87.Google Scholar
  24. Klitgaard B. B., Ferguson I. K. (1992) Pollen morphology ofBrowneopsis (Leguminosae: Caesalpinioideae), and its evolutionary significance. Grana 31: 285–290.Google Scholar
  25. Kress W. J. (1986) Exineless pollen structure and pollination systems of tropicalHeliconia (Heliconiaceae). In: Blackmore S., Ferguson I. K. (eds.) Pollen and Spores Form and Function. Academic Press, London, pp. 329–345.Google Scholar
  26. Linder H. P. (1998) Morphology and the evolution of wind pollination. In: Owens S. J., Rudall P. J. (eds.) Reproductive Biology. Royal Botanic Gardens, Kew, pp. 123–135.Google Scholar
  27. Mori S. A., Orchard J. E., Prance G. T. (1980) Intrafloral pollen differentiation in the New World Lecythidaceae, Subfamily Lecythidoidea. Science 209(4454): 400–403.Google Scholar
  28. Muller J. (1979) Form and Function in angiosperm pollen. Ann. Missouri Bot. Gard. 66: 593–632.Google Scholar
  29. Muller J. (1981) Exine architecture and function in some Lythraceae and Sonneratiaceae. Rev. Palaeobot. Palynol. 35: 93–123.Google Scholar
  30. Nilsson S., Robyns A. (1986) Bombacaceae. World Pollen and Spore Flora 20.Google Scholar
  31. Osborn J. M., Taylor T. N., Schneider E. L. (1991) Pollen morphology and ultrastructure of the Cabombaceae: correlations with pollination biology. Am. J. Bot. 78(10): 1367–1378.Google Scholar
  32. Prance G. T., Freitas da Silva M. (1973) Caryocaraceae. Flora Neotropica Monograph No. 12. Hafner Press, New York.Google Scholar
  33. Punt W., Blackmore S., Nilsson S., le Thomas A. (1994) Glossary of Pollen and Spore Terminology. LPP Contributions Series 1, LPP Foundation, Utrecht.Google Scholar
  34. Sokal R. R., Rolf F. J. (1995) Biometry. 3rd edn. Freeman, New York.Google Scholar
  35. Stebbins G. L. (1970) Adaptive radiation of reproductive characteristics in angiosperms. I. Pollination mechanisms. Ann. Rev. Ecol. Syst. 1: 307–326.Google Scholar
  36. Stone D. E., Sellers S. C., Kress W. J. (1979) Ontogeny of exineless pollen inHeliconia, a banana relative. Ann. Missouri Bot. Gard. 66: 701–730.Google Scholar
  37. Taylor T. N., Levin D. A. (1975) Pollen morphology of Polemoniaceae in relation to systematics and pollination systems: scanning electron microscopy. Grana 15:91–112.Google Scholar
  38. Tsou C. H. (1994) The embryology, reproductive morphology, and systematics of Lecythidaceae. Mem. New York Bot. Gard. 71: 1–110.Google Scholar
  39. Uffelen G. (1991) The control of spore wall formation. In: Blackmore S., Barnes S. H. (eds.) Pollen and Spores Patterns of Diversification. Systematics Assoc. Special vol. 44: 89–102.Google Scholar
  40. Wodehouse R. P. (1935) Pollen grains, their structure, identification and significance in science and Medicine. McGraw-Hill, New York.Google Scholar

Copyright information

© Springer-Verlag 2000

Authors and Affiliations

  • A. Stroo
    • 1
  1. 1.Leiden BranchNational Herbarium of the NetherlandsLeidenThe Netherlands

Personalised recommendations