Advertisement

Plant Systematics and Evolution

, Volume 222, Issue 1–4, pp 133–142 | Cite as

The role of electrostatic forces in pollination

  • Y. Vaknin
  • S. Gan-Mor
  • A. Bechar
  • B. Ronen
  • D. Eisikowitch
Article

Abstract

This paper reviews research on the role of electrostatic forces in pollination, both in natural and in agricultural systems. Researchers from various fields of biological studies have reported phenomena which they related to electrostatic forces. The theory of electrostatically mediated pollen transfer between insect pollinators and the flowers they visit is described, including recent studies which confirmed that the accumulated charges on airborne honey bees are sufficient for non-contact pollen detachment by electrostatic forces (i.e., electrostatic pollination). The most important morphological features in flower adaptiveness to electrostatic pollination were determined by means of two theoretical models of a flower exposed to an approaching charged cloud of pollen; they are style length and flower opening. Supplementary pollination by using electrostatic techniques is reported, and its possible importance in modern agriculture is discussed.

Key words

Electric charges electrodeposition electrostatic pollination electrostatic powder coating flower morphology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banerjee S., Law S. E. (1988) Characterization of chargeability of biological particulates by triboelectrification. IEEE Transactions on Industry Applications 34: 1201–1205.Google Scholar
  2. Banerjee S., Law S. E. (1996) Electrostatic induction charging of pollen suspensions. IEEE/IAS Conference (in press).Google Scholar
  3. Bechar A. (1996) Pollen deposition in electrostatic field. MSc thesis. The Faculty of Agricultural Engineering, The Technion — Israel Institute of Technology. (in Hebrew).Google Scholar
  4. Bechar A., Shmulevich I., Eisikowitch D., Vaknin Y., Ronen B., Gan-Mor S. (1999) Simulation and testing of an electrostatic pollination system. Transactions of the ASAE 42(6): 1511–1516.Google Scholar
  5. Bright A. W., Corbett R. P., Hughes J. F. (1978) Electrostatics — Electrostatic Engineering Design Guide no. 30. Oxford University Press, Oxford.Google Scholar
  6. Buchmann S. L. (1983) Buzz pollination in angiosperms. In: Jones C. E., Little R. J. (eds.) Handbook of Experimental Pollination Biology. Scientific and Academic Editions, New York, pp. 73–113.Google Scholar
  7. Buchmann S. L., Hurley J. P. (1978) A biophysical model for buzz pollination in angiosperms. Journal of Theoretical Biology 72: 639–657.Google Scholar
  8. Chaloner W. G. (1986) Electrostatic forces in insect pollination and their significance in exine ornament. In: Blackmore S., Ferguson I. K. (eds.) Pollen and Spores: Form and Function. The Linnean Society of London, London, pp. 103–108.Google Scholar
  9. Corbet S. A., Beament L., Eisikowitch D. (1982) Are electrostatic forces involved in pollen transfer? Plant, Cell and Environment 5: 125–129.Google Scholar
  10. Dai Y., Law S. E. (1995) Modeling the transient electric field produced by a charged pollen cloud entering a flower. IEEE/IAS Conference 2: 1395–1402. ISBN 0-7803-3008-0.Google Scholar
  11. Eisikowitch D. (1981) Some aspects of pollination of oil-seed rape (Brassica napus L.). Journal of Agricultural Science, Cambridge 96: 321–326.Google Scholar
  12. Endress P. K. (1997) Relationships between floral organization, architecture, and pollination mode inDillenia (Dilleniaceae). Plant Syst. Evol. 206: 99–118.Google Scholar
  13. Erickson E. H. (1975) Surface electric potential on worker honey bees leaving and entering the hive. Journal of Agricultural Research 14: 141–147.Google Scholar
  14. Erickson E. H., Buchmann S. L. (1983) Electrostatics and pollination. In: Jones C. E., Little R. J. (eds.) Handbook of Experimental Pollination Biology. Scientific and Academic Editions, New York, pp. 173–184.Google Scholar
  15. Free J. B. (1993) Insect Pollination of Crops. Academic Press Limited, London, pp. 68, 156.Google Scholar
  16. Gan-Mor S., Schwartz Y., Bechar A., Eisikowitch D., Manor G. (1995) Relevance of electrostatic forces in natural and artificial pollination. Canadian Agricultural Engineering 37: 189–194.Google Scholar
  17. Hardin G. B. (1976) Better charge, better pollination. Agricultural Research, USA 25: 15.Google Scholar
  18. Honig B., Nicholls A. (1995) Classical electrostatics in biology and chemistry. Science 268: 1144–1149.Google Scholar
  19. Hopping M. E., Jerram E. M. (1980a) Supplementary pollination of tree fruits. I. Development of suspension media. New Zealand Journal of Agricultural Research 23: 517–521.Google Scholar
  20. Hopping M. E., Jerram E. M. (1980b) Supplementary pollination of tree fruits. II. Field trials on kiwifruit and Japanese plums. New Zealand Journal of Agricultural Research 23: 517–521.Google Scholar
  21. Ish-Am G., Eisikowitch D. (1993) The behaviour of honey bees (Apis mellifera) visiting avocado (Persea americana) flowers and their contribution to its pollination. Journal of Apicultural Research 32: 175–186.Google Scholar
  22. Law S. E. (1975) Electrostatic induction instrumentation for tracking and charge measurement of airborne agricultural particulates. Transactions of the ASAE 18: 40–45.Google Scholar
  23. Law S. E. (1989) Electrical interactions occurring at electrostatic spraying targets. Journal of Electrostatics 23: 145–156.Google Scholar
  24. Law S. E., Cooper S. C. (1989) Target grounding requirements for electrostatic deposition of pesticide sprays. Transactions of the ASAE 32: 1169–1172.Google Scholar
  25. Law S. E., Banerjee S., Wetzstein H. Y., Eisikowitch D. (1996) Electrostatic application of pollen sprays: effects of charging field intensity and aerodynamic shear upon deposition and germinability. IEEE/IAS Conference 4: 1940–1948. ISBN 0-7803-3544-9.Google Scholar
  26. Legge A. P. (1975) Artificial supplementary pollination of European fruit crops. Ph.D. thesis, University of Bath.Google Scholar
  27. McGranahan G. H., Voyiatzis D. G., Catlin P. B., Polito V. S. (1994) High pollen loads can cause pistillate flower abscission in walnut. Journal of the American Society of Horticultural Science 119: 505–509.Google Scholar
  28. McGregor S. E. (1976) Insect Pollination of Cultivated Crop Plants. U.S.D.A. Agriculture Handbook No. 496. pp. 75–79, 81–88, 135–137.Google Scholar
  29. Maw M. G. (1962) Some biological effects of atmospheric electricity. Proceedings of the Entomological Society of Ontario 92: 33–37.Google Scholar
  30. Niklas K. J. (1985) The aerodynamics of wind pollination. Botanical Review 51: 328–386.Google Scholar
  31. Niklas K. J., Buchmann S. L. (1985) Aerodynamics of wind pollination inSimmondsia chinensis (Link) Schneider. American Journal of Botany 72: 530–539.Google Scholar
  32. Niklas K. J., Buchmann S. L. (1988) Aerobiology and pollen capture of orchard-grownPistacia vera (Anacardiaceae). American Journal of Botany 75: 1813–1829.Google Scholar
  33. Niklas K. J., Buchmann S. L., Kerchner V. (1986) Aerodynamics ofEphedra trifurca: I. Pollen grain velocity fields around stems bearing ovules. American Journal of Botany 73: 966–979.Google Scholar
  34. Oltman D. (1997) Gaining an edge — supplementing the amount of pollen normally distributed in an orchard is proving to be an effective form of crop insurance for many commodities. California Farmer. April, pp. 8–9, 18, 47, 76.Google Scholar
  35. Philippe G., Baldet P. (1997) Electrostatic dusting: an efficient technique of pollination in larch. Annales des Sciences Forestieres 54: 301–310.Google Scholar
  36. Schroeder C. A. (1995) Electrostatic effects with avocado pollen. California Avocado Society Year Book 79: 201–204.Google Scholar
  37. Schwartz Y. (1991) Pollen harvesting by electrostatic and aerodynamic techniques. MSc thesis. The Faculty of Agricultural Engineering, The Technion — Israel Institute of Technology (in Hebrew).Google Scholar
  38. Shivanna K. R., Sawhney V. K. (1997) Pollen biology and pollen biotechnology: an introduction. In: Shivanna K. R., Sawhney V. K. (eds.) Pollen Biotechnology for Crop Production and Improvement. Cambridge University Press, Cambridge, pp. 1–12.Google Scholar
  39. Stanley R. G., Linskens H. F. (1974) Pollen: Biology, Biochemistry and Management. Springer, New York, pp. 36.Google Scholar
  40. Thorp R. W. (1979) Structural, behavioral, and physiological adaptations of bees (Apoidea) for collecting pollen. Annals of the Missouri Botanic Garden 66: 788–812.Google Scholar
  41. Vaknin Y. (1999) The use of electrostatic methods in pollination of cultivated plants. Ph.D. thesis. George S. Wise Faculty of Life Sciences, Department of Plant Sciences, Tel-Aviv University (in Hebrew).Google Scholar
  42. Vaknin Y., Eisikowitch D. (2000) Effects of shortterm storage on germinability of pistachio pollen. Plant Breeding (In print).Google Scholar
  43. Vaknin Y., Gan-Mor S., Bechar A., Ronen B., Eisikowitch D. (1999) Effects of desiccation and dilution on germinability of almond pollen. Journal of Horticultural Science & Biotechnology 74: 321–327.Google Scholar
  44. Vaknin Y., Gan-Mor S., Bechar A., Ronen B., Eisikowitch D. (2000) Electrostatic pollination of almond (amygdalus communis L. Rosaceae). (In preparation).Google Scholar
  45. Vaknin Y., Gan-Mor S., Bechar A., Ronen B., Eisikowitch D. (2000) Electrostatic pollination of pistachio (Pistacia vera L. Anacardiaceae). (In preparation).Google Scholar
  46. Warnke U. (1977) Information transmission by means of electrical biofields. Proceedings of the Symposium on Electromagnetic Bio-Information of Marburg, pp. 55–79.Google Scholar
  47. Whitehead D. R. (1969) Wind pollination in the angiosperms: evolutionary and environmental considerations. Evolution 23: 28–35.Google Scholar
  48. Williams R. R., Legge A. P. (1979) Pollen application by mechanical dusting in English apple orchards. Journal of Horticultural Science 54: 67–74.Google Scholar
  49. Woittiez R. D., Willemse M. T. M. (1979) Sticking of pollen on stigmas: the factors and a model. Phytomorphology 29: 57–63.Google Scholar
  50. Yes'kov Y. K., Sapozhnikov A. M. (1976) Mechanisms of generation and perception of electric fields by honey bees. Biophysics 21: 1124–1130.Google Scholar

Copyright information

© Springer-Verlag 2000

Authors and Affiliations

  • Y. Vaknin
    • 1
  • S. Gan-Mor
    • 2
  • A. Bechar
    • 3
  • B. Ronen
    • 2
  • D. Eisikowitch
    • 1
  1. 1.Department of Plant Sciences, George S. Wise Faculty of Life SciencesTel-Aviv UniversityTel-AvivIsrael
  2. 2.Institute of Agricultural Engineering, Agricultural Research OrganizationThe Volcani CenterBet DaganIsrael
  3. 3.Department of Industrial Engineering and ManagementBen Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations