Plant Systematics and Evolution

, Volume 222, Issue 1–4, pp 63–87 | Cite as

The ecology and evolution of pollen odors

  • H. E. M. Dobson
  • G. Bergström
Article

Abstract

The literature is reviewed and new evidence presented that pollen produces odors, which serve multiple functions in pollination and defense. Pollen odor, which originates from pollenkitt, comprises volatiles that belong to the same chemical classes found in flower scents, that are in species-specific mixtures, and that contrast with odors of other floral parts. Pollen can also take up volatiles from surrounding floral odors, but this adsorption is selective and varies among species. Pollen odors are more pronounced in insect- than bird- or wind-pollinated plants, suggesting that volatile emission evolved in part under selection to attract pollinators. Pollen-feeding insects can perceive pollen odor and use it to discriminate between different pollen types and host plants. Pollen odor influences bee foraging, including the location of pollen sources, discrimination of flowers with different amounts of pollen, and hostplant recognition by pollen-specialist species. In the few wind-pollinated plants studied, odors of male flowers or pollen are comparatively high in α-methyl alcohols and ketones; these volatiles may serve in pollen defense, with some known to repel insects. Pollen odor often includes chemicals with documented defense activity, which is probably aimed mainly at nonpollinator pollen-feeding insects and pathogens; an involvement in pollen allelopathy is also possible. Pollen volatiles comprise chemically diverse compounds that may play multiple roles, and their emission in pollen odor undoubtedly evolved under the principle, and often conflicting, selective pressures to both protect the male gametophyte and increase its dispersal by animals.

Key words

Pollenkitt volatiles flowers plant defense pollen foraging pollination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ågren J., Schemske D. W. (1991) Pollination by deceit in a neotropical monoecious herb,Begonia involucrata. Biotropica 23: 235–241.Google Scholar
  2. Aufsess A. von. (1960) Geruchliche Nahorientierung der Biene bei entomophilen und ornithophilen Blüten. Z. Vergl. Physiol. 43: 469–498.Google Scholar
  3. Barbier M. (1970) Chemistry and biochemistry of pollens. Progress Phytochem. 2: 1–34.Google Scholar
  4. Barker J. F., Grugel S. (1996) Oviposition by the banded sunflower moth,Cochylis hospes (Lepidoptera: Cochylidae) in response toHelianthus annuus pollen. Great Lakes Entomol. 29: 77–80.Google Scholar
  5. Belcher D. W., Schneider J. C., Hedin P. A., French J. C. (1983) Impact of glands in cotton anthers on feeding behavior ofHeliothis virescens (F.) (Lepidoptera: Noctuidae) larvae. Environ. Entomol. 12: 1478–1481.Google Scholar
  6. Bergström G., Dobson H. E. M., Groth I. (1995) Spatial fragrance patterns within the flowers ofRanunculus acris (Ranunculaceae). Plant Syst. Evol. 195: 221–242.Google Scholar
  7. Bergström G., Dobson H. E. M., Groth I., Pellmyr O., Endress P. K., Thien L. B., Hübener A., Francke W. (1991) Chemical basis of a highly specific mutualism: chiral esters attract pollinating beetles in Eupomatiaceae. Phytochemistry 30: 3221–3225.Google Scholar
  8. Bernhardt P. (1986) Bee-pollination inHibbertia fasciculata (Dilleniaceae). Plant Syst. Evol. 152: 231–241.Google Scholar
  9. Bianchi G., Murelli C., Ottaviano E. (1990) Maize pollen lipids. Phytochem. 29: 739–744.Google Scholar
  10. Buchmann S. L. (1983) Buzz pollination in angiosperms. In: Jones C. E., Little R. J. (eds.) Handbook of experimental pollination biology. Sci. Acad. Press, New York, pp. 73–113.Google Scholar
  11. Buchmann S. L., Jones C. E., Colin L. J. (1977) Vibratile pollination ofSolanum douglasii andS. xanti (Solanaceae) in Southern California. Wasmann J. Biol. 35: 1–25.Google Scholar
  12. Cane J. H. (1983) Olfactory evaluation ofAndrena host nest suitability by kleptoparasiticNomada bees. Anim. Behav. 31: 138–144.Google Scholar
  13. Cane J. H. (1993) Reproductive role of sterile pollen in cryptically dioecious species of flowering plants. Current Sci. 65: 223–225.Google Scholar
  14. Casida J. E. (1980) Pyrethrum flowers and pyrethroid insecticides. Environ. Health Persp. 34: 189–202.Google Scholar
  15. Cazier M. A., Linsley E. G. (1974) Foraging behavior of some bees and wasps atKallstroemia grandiflora flowers in southern Arizona and New Mexico. Amer. Mus. Nov. No. 2546.Google Scholar
  16. Char M. B. S., Bhat S. S. (1975) Antifungal activity of pollen. Naturwissenschaften 62: 536.Google Scholar
  17. Charpentier R. (1985) Host plant selection by the pollen beetleMeligethes aeneus. Entomol. Exp. Appl. 38: 277–285.Google Scholar
  18. Cole L. K., Blum M. S., Roncadori R. W. (1975) Antifungal properties of the insect alarm pheromones citral, 2-heptanone, and 4-methyl-3-heptanonoe. Mycologia 67: 701–708.Google Scholar
  19. Coleman J. R., Coleman M. A. (1982) Reproductive biology of an andromonoeciousSolanum (S. palinacanthum Dunal). Biotropica 14: 69–75.Google Scholar
  20. Collin S., Vanhavre T., Bodart E., Bouseta A. (1995) Heat treatment of pollens: impact on their volatile flavor constituents. J. Agric. Food Chem. 43: 444–448.Google Scholar
  21. Crepet W. L. (1983) The role of insect pollination in the evolution of angiosperms. In: Real L. (ed.) Pollination biology. Acad. Press, Orlando, pp. 29–50.Google Scholar
  22. Cresswell J. E., Robertson A. W. (1994) Discrimination by pollen-collecting bumblebees among differentially rewarding flowers of an alpine wildflower,Campanula rotundifolia (Campanulaceae). Oikos 69: 304–308.Google Scholar
  23. D'Arcy W. G., D'Arcy N. S., Keating R. C. (1990) Scented anthers in the Solanaceae. Rhodora 92: 50–53.Google Scholar
  24. Delisle J., McNeil J. N., Underhill E. W., Barton D. (1989)Helianthus annuus pollen, an oviposition stimulant for the sunflower moth,Homoeosoma electellum. Entomol. Exp. Appl. 50: 53–60.Google Scholar
  25. Dobson H. E. M. (1987) Role of flower and pollen aromas in host-plant recognition by solitary bees. Oecologia 72: 618–623.Google Scholar
  26. Dobson H. E. M. (1988) Survey of pollen and pollenkitt lipids — chemical cues to flower visitors? Amer. J. Bot. 75: 170–182.Google Scholar
  27. Dobson H. E. M. (1989) Pollenkitt in plant reproduction. In: Bock J. H., Linhart Y. B. Linhart (eds.) The evolutionary ecology of plants. Westview Press, Boulder, pp. 227–246.Google Scholar
  28. Dobson H. E. M. (1991) Analysis of flower and pollen volatiles. In: Linskens H. F., Jackson J. F. (eds.) Essential oils and waxes. Modern methods of plant analysis 12: 231–251. Springer, Berlin.Google Scholar
  29. Dobson H. E. M. (1994) Floral volatiles in insect biology. In: Bernays E. A. (ed.) Insect-plant interactions, Vol. V. CRC Press, Boca Raton, pp. 47–81.Google Scholar
  30. Dobson H. E. M., Bergström G., Groth I. (1990) Differences in fragrance chemistry between flower parts ofRosa rugosa. Israel J. Bot. 39: 143–156.Google Scholar
  31. Dobson H. E. M., Bergström J., Bergström G., Groth I. (1987) Pollen and flower volatiles in twoRosa species. Phytochemistry 26: 3171–3173.Google Scholar
  32. Dobson H. E. M., Danielson E. M., van Wesep I. D. (1999) Pollen odor chemicals as modulators of bumble bee foraging onRosa rugosa Thunb. (Rosaceae). Plant Species Biol. 14: 153–166.Google Scholar
  33. Dobson H. E. M., Groth I., Bergström G. (1996) Pollen advertisement: chemical contrasts between flower and pollen odors. Amer. J. Bot. 83: 877–885.Google Scholar
  34. Doull K. M. (1974a) Effect of distance on the attraction of pollen to honeybees in the hive. J. Apic. Res. 13: 27–32.Google Scholar
  35. Doull K. M. (1974b) Effects of attractants and phagostimulants in pollen and pollen supplement on the feeding behaviour of honeybees in the hive. J. Apic. Res. 13: 47–54.Google Scholar
  36. Doull K. M., Standifer L. N. (1969) A technique for measuring feeding responses of honeybees in their hive. J. Apic. Res. 8: 153–157.Google Scholar
  37. Doull K. M., Standifer L. N. (1970) Feeding responses of honeybees in the hive. J. Apic. Res. 9: 129–132.Google Scholar
  38. Eickwort G. (1973) Biology of the European mason bee,Hoplitis anthocopoides (Megachilidae), in New York state. Cornell Univ. Agric. Expt. Sta. Search Agric. 3: 1–31.Google Scholar
  39. Endress P. K. (1994a) Floral structure and evolution in primitive angiosperms: recent advances. Plant Syst. Evol. 192: 79–97.Google Scholar
  40. Endress P. K. (1994b) Diversity and evolutionary biology of tropical flowers. Cambridge Univ. Press, Cambridge.Google Scholar
  41. Faden R. B. (1992) Floral attraction and floral hairs in the Commelinaceae. Ann. Missouri Bot. Gard. 79: 46–52.Google Scholar
  42. Faegri K., van der Pijl L. (1979) The principles of pollination ecology, 3rd edn. Pergamon Press, Oxford.Google Scholar
  43. Farrar R. R., Kennedy G. G., Roe R. M. (1992) The protective role of dietary unsaturated fatty acids against 2-undecanone-induced pupal mortality and deformity inHelicoverpa zea. Entomol. exp. appl. 62: 191–200.Google Scholar
  44. Free J. B. (1970) The flower constancy of bumblebees. J. Anim. Ecol. 39: 395–402.Google Scholar
  45. Frisch K. von. (1923) Über die “Sprache” der Bienen. Zool. Jahrb. Abt. f. Allg. Zool. u. Physiol. 40: 1–186.Google Scholar
  46. Fritzsche J. (1837) Ueber den Pollen. Mem. Acad. Imp. Sci. St.-Petersbourg, St.-Petersburg.Google Scholar
  47. Fujimori N., Ashihara H. (1993) Biosynthesis of caffeine in flower buds ofCamellia sinensis. Annals Bot. 71: 279–284.Google Scholar
  48. Golding Y. C., Sullivan M. S., Sutherland J. P. (1999) Visits to manipulated flowers byEpisyrphus balteatus (Diptera: Syrphidae): partitioning the signals of petals and anthers. J. Insect Behav. 12: 39–45.Google Scholar
  49. Goodwin R. M., Steven D. (1993) Behaviour of honey bees visiting kiwifruit flowers. New Zealand J. Crop Hort. Sci. 21: 17–24.Google Scholar
  50. Gori D. F. (1989) Floral color change inLupinus argenteus (Fabaceae): why should plants advertise the location of unrewarding flowers to pollinators? Evolution 43: 870–881.Google Scholar
  51. Harder L. D. (1990) Behavioral responses by bumble bees to variation in pollen availability. Oecologia 85: 41–47.Google Scholar
  52. Haynes J., Mesler M. (1984) Pollen foraging by bumblebees: foraging patterns onLupinus polyphyllus. Oecologia 61: 249–253.Google Scholar
  53. Heinrich B. (1979) Resource heterogeneity and patterns of movement in foraging bumblebees. Oecologia 40: 235–245.Google Scholar
  54. Heslop-Harrison J., Heslop-Harrison Y., Knox R. B., Howlett B. (1973) Pollen-wall proteins: ‘gametophytic’ and ‘sporophytic’ fractions in the pollen walls of the Malvaceae. Ann. Bot. 37: 403–412.Google Scholar
  55. Hesse M. (1980) Entwicklungsgeschichte und Ultrastruktur von Pollenkitt und Exine bei nahe verwandten entomophilen und anemophilen Angiospermensippen der Alismataceae, Liliaceae, Juncaceae, Cyperaceae, Poaceae, und Araceae. Plant Syst. Evol. 134: 229–267.Google Scholar
  56. Hesse M. (1981) The fine structure of the exine in relation to the stickiness of angiosperm pollen. Rev. Palaebot. Palynol. 35: 81–92.Google Scholar
  57. Hesse M., Hess M. W. (1993) Recent trends in tapetum research: a cytological and methodological review. Plant Syst. Evol. [Suppl.] 7: 127–145.Google Scholar
  58. Hohmann H. (1970) Über die Wirkung von Pollenextrakten und Duftstoffen auf das Sammel- und Werbeverhalten Hoselnder Bienen (Apis mellifera L.). Apidologie 1: 157–178.Google Scholar
  59. Hollister B., Mullin C. A. (1999) Isolation and identification of primary metabolite feeding stimulants for adult western corn rootworm,Diabrotica virgifera LeConte, from host pollens. J. Chem. Ecol. 25: 1263–1280.Google Scholar
  60. Hopkins C. Y., Jevans A. W., Boch R. (1969) Occurrence of octadeca-trans-2,cis-9,cis-12-trienoic acid in pollen attractive to the honey bee. Can. J. Biochem. 47: 433–436.Google Scholar
  61. Houston T. F., Lamont B. B., Radford S., Errington S. G. (1993) Apparent mutualism betweenVerticordia nitens andV. aurea (Myrtaceae) and their oil-ingesting bee pollinators (Hymenoptera: Colletidae). Aust. J. Bot. 41: 369–380.Google Scholar
  62. Hügel M.-F. (1962) Étude de quelques constituents du pollen. Ann. Abeille 5: 97–133.Google Scholar
  63. Hurd P. D., LaBerge W. E., Linsley E. G. (1980) Principal sunflower bees of North America with emphasis on the southwestern United States. Smiths. Contr. Zool. No. 310.Google Scholar
  64. Hurd P. D., Linsley E. G. (1963) Pollination of the unicorn plant (Martyniaceae) by an oligolectic, corolla-cutting bee. J. Kansas Entomol. Soc. 36: 248–252.Google Scholar
  65. Jayanth K. P., Mohandas S., Asokan R., Visalakshy P. N. G. (1993) Parthenium pollen induced feeding byZygogramma bicolorata (Coleoptera: Chrysomelidae) on sunflower (Helianthus annuus) (Compositae). Bull. Entomol. Res. 83: 595–598.Google Scholar
  66. Kennedy G. G., Farrar R. R., Kashyap R. K. (1991) 2-tridecanone — glandular trichome-mediated insect resistance in tomato. In: Hedin P. A. (ed.) Naturally occurring pest bioregulators. (ACS Symp. Ser. 449) Amer. Chem. Soc., Washington D.C., pp. 150–165.Google Scholar
  67. Kerner A. von Marilaun (1898) The natural history of plants, Vol. II (transl. Oliver, F.W.). Blackie and Son Ltd., London.Google Scholar
  68. King M. J., Ferguson A. M. (1994) Vibratory collection ofActinidia deliciosa (kiwifruit) pollen. Annals Bot. 74: 479–482.Google Scholar
  69. Kirk W. D. J. (1985) Pollen-feeding and the host specificity and fecundity of flower thrips (Thysanoptera). Ecol. Entomol. 10: 281–289.Google Scholar
  70. Knapp S., Persson V., Blackmore S. (1998) Pollen morphology and functional dioecy inSolanum (Solanaceae). Plant Syst. Evol. 210: 113–139.Google Scholar
  71. Knobloch K., Pauli A., Iberl B., Weigand H., Weis N. (1989) Antibacterial and antifungal properties of essential oil components. J. Ess. Oil Res. 1: 119–128.Google Scholar
  72. Knoll F. (1930) Über Pollenkitt und Bestäubungsart. Zeit. Bot. 23: 609–675.Google Scholar
  73. Knox R. B., Heslop-Harrison J. (1970) Pollen-wall proteins: localization and enzymatic activity. J. Cell Sci. 6: 1–27.Google Scholar
  74. Knudsen J. T., Tollsten L. (1991) Floral scent and intrafloral scent differentiation inMoneses andPyrola (Pyrolaceae). Plant Syst. Evol. 177: 81–91.Google Scholar
  75. Knudsen J. T., Tollsten L., Bergström L. G. (1993) Floral scents — a checklist of volatile compounds isolated by head-space techniques. Phytochemistry 33: 253–280.Google Scholar
  76. Kölreuter D. J. G. (1761) Vorläufige Nachricht von einigen das Geschlecht der Pflanzen betreffenden Versuchen und Beobachtungen. Verlag von Wilhelm Engelmann, Leipzig.Google Scholar
  77. Kubo I., Muroi H., Kubo A. (1995) Structural functions of antimicrobial long-chain alcohols and phenols. Bioorg. Med. Chem. 3: 873–880.Google Scholar
  78. Kugler H. (1943) Hummeln als Blütenbesucher. Ergeb. Biol. 19: 143–323.Google Scholar
  79. Langenheim J. H. (1994) Higher plant terpenoids: a phytocentric overview of their ecological roles. J. Chem. Ecol. 20: 1223–1280.Google Scholar
  80. Le Metayer M., Pham-Delegue M. H., Thiery D., Masson D. (1993) Influence of host- and nonhost plant pollen on the calling and oviposition behaviour of the European sunflower mothHomoeosoma nebulellum (Lepidoptera: Pyralidae). Acta Oecologica 14: 619–626.Google Scholar
  81. Lepage M., Boch R. (1968) Pollen lipids attractive to honeybees. Lipids 3: 530–534.Google Scholar
  82. Levin M. D., Bohart G. E. (1955) Selection of pollens by honey bees. Amer. Bee J. 95: 392–393, 402.Google Scholar
  83. Levine D. A., Anderson G. J. (1986) Evolution of dioecy in an AmericanSolanum. In: D'Arcy W. G. (ed.) Solanaceae: biology and systematics. Columbia Univ. Press, New York, pp. 264–273.Google Scholar
  84. Lin S., Mullin C. A. (1999) Lipid, polyamide, and flavonol phagostimulants for adult western corn rootworm from sunflower (Helianthus annuus L.) pollen. J. Agric. Food Chem. 47: 1223–1229.Google Scholar
  85. Linsley E. G., MacSwain J. W., Raven P. H. (1963) Comparative behavior of bees and Onagraceae I.Oenothera bees of the Colorado Desert. Univ. Calif. Publ. Entomol. 33: 1–24.Google Scholar
  86. Louveaux J. (1959) Recherches sur la récolte du pollen par les abeilles (Apis mellifica L.). Ann. Abeille 2: 13–111.Google Scholar
  87. Lunau K. (1992) Innate recognition of flowers by bumble bees: orientation of antennae to visual stamen signals. Can. J. Zool. 70: 2139–2144.Google Scholar
  88. Maluf W. R., Barbosa L. V., Costa Santa-Cecilia L. V. (1997) 2-tridecanone-mediated mechanisms of resistance to the South American tomato pinwormScrobipalpuloides absoluta (Meyrick, 1917) (Lepidoptera-Gelechiidae) inLycopersicon spp. Euphytica 93: 189–194.Google Scholar
  89. Marr K. L., Tang C. S. (1992) Volatile insecticial compounds and chemical variability of HawaiianZanthoxylum (Rutaceae) species. Biochem. Syst. Ecol. 21: 209–217.Google Scholar
  90. McNaughton I. H., Harper J. L. (1960) The xcomparative biology of closely related species living in the same area: I. External breeding-barriers betweenPapaver species. New Phytol. 59: 15–26.Google Scholar
  91. McNeil J. N., Delisle J. (1989) Host plant pollen influences calling behavior and ovarian development of the sunflower moth,Homoeosoma electellum. Oecologia. 80: 201–205.Google Scholar
  92. Menzel R. (1985) Learning in honey bees in an ecological and behavioral context. In: Hölldobler B., Lindauer M. (eds.) Experimental behavioral ecology and sociobiology. Gustav Fischer, Stuttgart, pp. 55–74.Google Scholar
  93. Meurer B., Wiermann R., Strack D. (1988) Phenylpropanoid patterns in Fagales pollen and their phylogenetic relevance. Phytochemistry 27: 823–828.Google Scholar
  94. Mohl H. von. (1852) Principles of the anatomy and physiology of the vegetable cell (translate by A. Henfrey). John van Voorst, Paternoster Row, London.Google Scholar
  95. Morris J. A., Khettry A., Seitz E. W. (1979) Antimicrobial activity of aroma chemicals and essential oils. J. Amer. Chem. Soc. 56: 595–603.Google Scholar
  96. Mullin C. A., Alfatafta A. A., Harman J. L., Everett S. L., Serino A. A. (1991) Feeding and toxic effects of floral sesquiterpene lactones, diterpenes, and phenolics from sunflower (Helianthus annuus L.) on western corn rootworm. J. Agric. Food Chem. 39: 2293–2299.Google Scholar
  97. Murphy S. D. (1999) Pollen allelopathy. In: Inderjit, Dakshini, K. M. M., Foy C. L. (eds.) Principles and practices in plant ecology: allellochemical interactions. CRC Press, Boca Raton, pp. 129–148.Google Scholar
  98. Pacini E., Franchi G. G. (1993) Role of the tapetum in pollen and spore dispersal. Plant Syst. Evol. [Suppl.] 7: 1–11.Google Scholar
  99. Pacini E., Franchi G. G., Hesse M. (1985) The tapetum: its form, function, and possible phylogeny in Embryophyta. Plant Syst. Evol. 149: 155–185.Google Scholar
  100. Pandey D. K., Tripathi R. N., Tripathi R. D., Dixit S. N. (1983) Fungitoxicity in pollen grains. Grana 22: 31–33.Google Scholar
  101. Pankow H. (1958) Über den Pollenkitt beiGalanthus nivalis L. Flora 146: 240–253.Google Scholar
  102. Parker R. L. (1926) The collection and utilization of pollen by the honeybee. Agric. Exp. Sta. Cornell Univ. Mem. 98.Google Scholar
  103. Pellmyr O. (1988) Bumble bees (Hymenoptera: Apidae) assess pollen availability inAnemonopsis macrophylla (Ranunculaceae) through floral shape. Ann. Entomol. Soc. Amer. 81: 792–797.Google Scholar
  104. Pellmyr O., Thien L. B. (1986) Insect reproduction and floral fragrances: keys to the evolution of the angiosperms? Taxon 35: 76–85.Google Scholar
  105. Pellmyr O., Groth I., Bergström G. (1984) Comparative analysis of the floral odors ofActaea spicata andA. erythrocarpa (Ranunculaceae). Nova Acta Reg. Soc. Sci. Upsaliensis, Ser. V:C, 3: 157–160.Google Scholar
  106. Pellmyr O., Tang W., Groth I., Bergström G., Thien L. B. (1991) Cycad cone and angiosperm floral volatiles: inferences for the evolution of insect pollination. Biochem. Syst. Evol. 19: 623–627.Google Scholar
  107. Pham-Delègue M.-H., Loublier Y., Ducruet V., Douault P., Marilleau R., Etiévant P. (1994) Caractérisation des signaux chimiques impliqués dans les relations plantes-abeilles domestiques. Grana 33: 184–190.Google Scholar
  108. Pichersky E., Raguso R. A., Lewinsohn E., Croteau R. (1994) Floral scent production inClarkia (Onagraceae): 1. Localization and developmental modulation of monoterpene emission and linalool synthase activity. Plant Physiol. 106: 1533–1540.Google Scholar
  109. Picman A. (1986) Biological activities of sesquiterpene lactones. Biochem. Syst. Ecol. 14: 255–281.Google Scholar
  110. Pijl L. van der (1964) Discussion. In: Linskens H. F. (ed.) Pollen physiology and fertilization. North-Holland, Amsterdam, p. 72.Google Scholar
  111. Porsch O. (1954) Geschlechtgebundener Blütenduft. Österr. Botan. Z. 101: 359–372.Google Scholar
  112. Porsch O. (1956) Windpollen und Blumeninsekt. Österr. Botan. Z. 103: 1–18.Google Scholar
  113. Ribbands C. R. (1949) The foraging method of individual honey-bees. J. Anim. Ecol. 18: 47–66.Google Scholar
  114. Roberts I., Stead A. D., Dickinson H. G. (1979) No fundamental chantes in lipids of the pollen grain coating ofBrassica oleracea following either selfor cross-pollination. Incompatibility Newsletter 11: 77–79.Google Scholar
  115. Robinson F. A., Nation J. L. (1968) Substances that attract caged honeybee colonies to consume pollen supplements and substitutes. J. Apic. Res. 7: 83–88.Google Scholar
  116. Rossiter M., Gershenzon J., Mabry T. J. (1986) Behavioral and growth responses of specialist herbivore,Homoeosoma electellum, to major terpenoid of its host,Helianthus spp. J. Chem. Ecol. 12: 1505–1521.Google Scholar
  117. Sazima M., Vogel S., Cocucci A., Hausner G. (1993) The perfume flowers ofCyphomandra (Solanacaeae): pollination by euglossine bees, bellows mechanism, osmophores, and volatiles. Plant Syst. Evol. 187: 51–88.Google Scholar
  118. Schmidt J. O. (1982) Pollen foraging preferences of honey bees. Southwestern Entomol. 7: 255–259.Google Scholar
  119. Schmidt J. O. (1985) Phagostimulants in pollen. J. Apic. Res. 24: 107–114.Google Scholar
  120. Schmidt J. O., Johnson B. E. (1984) Pollen feeding preference ofApis mellifera, a polylectic bee. Southwestern Entomol. 9: 41–47.Google Scholar
  121. Shelly T. E., Villalobos E. M., Buchmann S. L., Cane J. H. (1993) Temporal patterns of floral visitation for two bee species foraging onSolanum. J. Kansas Entomol. Soc. 66: 319–327.Google Scholar
  122. Sprengel C. K. (1793) Das entdeckte Geheimnis der Natur im Bau und in der Befruchtung der Blumen. Friedrich Vieweg, Berlin.Google Scholar
  123. Standifer L. N. (1966) Fatty acids in dandelion pollen gathered by honey bees,Apis mellifera. Annls Entomol. Soc. Amer. 59: 1005–1008.Google Scholar
  124. Stanley R. G., Linskens H. F. (1974) Pollen. Springer, New York.Google Scholar
  125. Steffen K. (1953) Zytologische Untersuchungen an Pollenkorn und -schlauch. Flora 140: 140–174.Google Scholar
  126. Sukhada K. D., Jayachandra (1980a) Pollen allelopathy — a new phenomenon. New Phytol. 84: 739–746.Google Scholar
  127. Sukhada K. D., Jayachandra (1980b) Allelopathic effects ofParthenium hysterophorus L., Part IV, Identification of inhibitors. Plants and Soil 55: 67–75.Google Scholar
  128. Taber S. (1963) Why bees collect pollen. Rep.-Abstr. 19th Intl. Beekeeping Congr., Prague 1963, p. 114.Google Scholar
  129. Thien L. B., Heimermann W. H., Holman R. T. (1975) Floral odors and quantitative taxonomy ofMagnolia andLiriodendron. Taxon 24: 557–568.Google Scholar
  130. Tripathi R. N., Dubey N. K., Dixit S. N. (1985) Fungitoxicity of pollen grains with special reference toXanthium strumarium (Compositae). Grana 24: 61–63.Google Scholar
  131. Troll W. (1928) Über Antherenbau, Pollen und Pollination vonGalanthus L. Flora 123: 321–343.Google Scholar
  132. Wacht S., Lunau K., Hansen K. (1996) Optical and chemical stimuli control pollen feeding in the hoverflyEristalis tenax. Entomol. exp. appl. 80: 50–53.Google Scholar
  133. Wacht S., Lunau K., Hansen K. (2000) Chemosensory control of pollen ingestion in the hoverflyEristalis tenax by labellar taste hairs. J. Comp. Physiol. A. 186: 193–203.Google Scholar
  134. Wainright C. M. (1978) The floral biology and pollination ecology of two desert lupines. Bull. Torrey Bot. Club 105: 24–38.Google Scholar
  135. Waller G. D., Loper G. M., Martin J. H. (1984) The use of honey bees in production of hybrid cotton seed. In: Tasei J. N. (ed.) Proc. Vth Internat. Symp. Pollination, Versailles 1983. INRA, Paris, pp. 129–133.Google Scholar
  136. Wells C., Bertsch W., Perich M. (1993) Insecticidal volatiles from the marigold plant (genusTagetes): effect of species and sample manipulation. Chromatogr. 35: 209–215.Google Scholar
  137. Werner C., Hu W., Lorenzi-Riatsch A., Hesse M. (1995) Di-coumaroylspermidines and tri-coumaroylspermidines in anthers of different species of the genusAphelandra. Phytochemistry 40: 461–465.Google Scholar
  138. Wittgenstein E., Sawicki E. (1970) Analysis of the non-polar fraction of giant ragweed pollen: carotenoids. Mikrochim. Acta 1970: 765–783.Google Scholar
  139. Wodehouse R. P. (1935) Pollen grains. McGraw-Hill, New York.Google Scholar
  140. Zaika L. L. (1988) Spices and herbs: their antimicrobial activity and its determination. J. Food Safety 9: 97–118.Google Scholar
  141. Zandonella P., Dumas C., Gaude T. (1981) Sécrétions et biologie florale. I. Nature, origine et rôle des sécrétions dans la pollinisation et la fécondation; revue des données récentes. Apidologie 12: 383–396.Google Scholar
  142. Zimmerman M. (1982) Optimal foraging: random movement by pollen collecting bumblebees. Oecologia 53: 394–398.Google Scholar

Copyright information

© Springer-Verlag 2000

Authors and Affiliations

  • H. E. M. Dobson
    • 1
  • G. Bergström
    • 2
  1. 1.Department of BiologyWhitman CollegeWalla WallaUSA
  2. 2.Chemical EcologyGöteborg UniversityGöteborgSweden

Personalised recommendations