Advertisement

Journal of Chemical Ecology

, Volume 19, Issue 9, pp 1889–1903 | Cite as

Sequestration of pyrrolizidine alkaloids in several arctiid moths (Lepidoptera: Arctiidae)

  • E. Von Nickisch-Rosenegk
  • M. Wink
Article

Abstract

Sequestration of dietary pyrrolizidine alkaloids (PA) by larvae and adults of six European arctiid moth species (Spilosoma lubricipeda, Arctia caja, Phragmatobia fuliginosa, Callimorpha dominula, Diacrisia sannio, andTyria jacobaeae) was investigated for comparison with the well-studied Asian arctiidCreatonotos transiens. Larvae of all species metabolized free PA bases into the respectiveN-oxides. Only adults ofA. caja, P. fuliginosa, andS. lubricipeda, but not their larvae, converted dietary 7(S)-heliotrine to 7(R)-heliotrine, a direct precursor of a male pheromone in some arctiids, 7(R)-hydroxydanaidal. The larval integument figures as the main storage site for resorbed alkaloids; only minor amounts were found in other tissues. In addition, a significant amount of alkaloid is deposited in the cocoon ofArctia caja; only traces of alkaloids could be found in the meconium and the exuviae of this species. A substantial part of the alkaloids fed was degraded to unknown, nonalkaloidal products.

Key Words

Spilosomalubricipeda Arctia caja Phragmatobia fuliginosa Tyria jacobaeae Diacrisia sannio Callimorpha dominula pyrrolizidine alkaloids Lepidoptera Arctiidae alkaloid sequestration biotransformation chemical defense 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aplin, R.T., Benn, M.H., andRothschild, M. 1968. Poisonous alkaloids in the body tissues of the cinnabar moth (Callimorpha dominula L.).Nature 219:747–748.Google Scholar
  2. Bell, T.W., andMeinwald, J. 1986. Pheromones of two arctiid moths (Creatonotos transiens andC. gangis): Chiral components from both sexes and achiral female components.J. Chem. Ecol. 12:387–409.Google Scholar
  3. Bergomaz, R., andBoppré, M. 1986. A simple instant diet for rearing arctiids and other moths.J. Lepid. Soc. 40: 131–137.Google Scholar
  4. Birch, M.C., Poppy, G.M., andBaker, T.C. 1990. Scents and eversible scent structures of male moths.Annu. Rev. Entomol. 35:25–58.Google Scholar
  5. Boppré, M. 1986. Insects pharmacophagously utilizing defensive plant chemicals (Pyrrolizidine alkaloids).Naturwissenschaften 73:17–26.Google Scholar
  6. Boppré, M. 1990. Lepidoptera and pyrrolizidine alkaloids: Exemplification of complexity in chemical ecology.J. Chem. Ecol. 16:165–186.Google Scholar
  7. Boppré, M., andSchneider, D. 1985. Pyrrolizidine alkaloids quantitatively regulate both scent organ morphogenesis and pheromone biosynthesis in maleCreatonotos moths (Lepidoptera: Arctiidae).J. Comp. Physiol. 157a:569–577.Google Scholar
  8. Boppré, M., andSchneider, D. 1990. The biology ofCreatonotos (Lepidoptera: Arctiidae) with special reference to the androconial system.Zool. J. Linn. Soc. 96:339–356.Google Scholar
  9. Brower, L.P., Seiber, J.N., Nelson, C.J., Lynch, S.P., andHolland, M.M. 1984. Plant determined variation in the cardenolide content, thin-layer chromatography profiles, and emetic potency of monarch butterflies,Danaus plexippus L., reared on milkweed plants in California:Asclepias speciosa.J. Chem. Ecol. 10:601–630.Google Scholar
  10. Brower, L.P., Nelson, C.J., Seiber, J.N., Fink, L.S., andBond, C. 1988. Exadaption as an alternative to coevolution in the cardenolide-based chemical defence of monarch butterflies (Danaus plexippus L.) against avian predators, pp. 447–475,in K.C. Spencer (ed.). Chemical Mediation of Coevolution. Academic Press, San Diego.Google Scholar
  11. Conner, W.E., Eisner, T., Vander Meer, R.K., Guerrero, A., andMeinwald, J. 1981. Precopulatory sexual interaction in an arctiid moth (Utetheisa ornatrix): Role of a pheromone derived from dietary alkaloids.Behav. Ecol. Sociobiol. 9:227–235.Google Scholar
  12. Dussourd, D.E., Ubik, K., Harvis, C., Resch, J., Meinwald, J., andEisner, T. 1988. Biparental endowment of eggs with acquired plant alkaloid in the mothUtetheisa ornatrix.Proc. Natl. Acad. Sci. U.S.A. 85:5992–5996.Google Scholar
  13. Dussourd, D.E., Harvis, C.A., Meinwald, J., andEisner, T. 1989. Paternal allocation of sequestered plant pyrrolizidine alkaloid to eggs in the danaine butterfly,Danaus gilippus. Experientia 45:896–989.Google Scholar
  14. Egelhaaf, A., Cölln, K., Schmitz, B., Buck, M., Wink, M., andSchneider, D. 1989. Organ specific storage of dietary pyrrolizidine alkaloids in the arctiid mothCreatonotos transiens.Z. Naturforsch. 42c:115–120.Google Scholar
  15. Egelhaaf, A., Rick-Wagner, S., andSchneider, D. 1992. Development of the male scent organ ofCreatonotos transiens (Lepidoptera, Arctiidae) during metamorphosis.Zoomorphology 111:125–139.Google Scholar
  16. Eisner, T. 1980. Chemistry, defence, and survival: Case studies and selected topics, pp. 357–878,in M. Locke and D.S. Smith (eds.). Insect Biology in the Future, Academic Press, New York.Google Scholar
  17. Franzl, S., andNaumann, C.M. 1985. Cuticular cavities: Storage chambers for cyanoglucosidecontaining cavities in larvae of a zygaenid moth.Tissue Cell 17:267–278.Google Scholar
  18. Franzl, S., Naumann, C.M., andNahrstedt, A. 1988. Cyanoglucoside storing cuticle ofZygaena larvae (Insecta, Lepidoptera).Zoomorphology 108:183–190.Google Scholar
  19. Hartmann, T., Ehmke, A., Eilert, U., Borstel, Von K., andTheuring, C. 1989. Sites of synthesis, translocation and accumulation of pyrrolizidine alkaloid N-oxides inSenecio vulgaris.Planta 177:98–107.Google Scholar
  20. Krasnoff, S.B., Bjostad, L.B., andRoelofs, W.L. 1987. Quantitative and qualitative variation in male pheromones ofPhragmatobia fuliginosa andPyrrharctia isabella (Lepidoptera: Arctiidae).J. Chem. Ecol. 13:807–822.Google Scholar
  21. Nickisch-Rosenegk, Von E., andWink, M. 1993.Entomol. Gener. In press.Google Scholar
  22. Nickisch-Rosenegk, Von E., Detzel, A., Schneider, D., andWink, M. 1990a. Carrier-mediated uptake of digoxin by larvae of the cardenolide sequestering moth,Syntomeida epilais.Naturwissenschaften 77:336–338.Google Scholar
  23. Nickisch-Rosenegk, Von E., Schneider, D., andWink, M. 1990b. Time course of pyrrolizidine alkaloid processing in the alkaloid exploiting mothCreatonotos transiens.Z. Naturforsch. 45c:881–894.Google Scholar
  24. Parsons, J.A. 1965. A digitalis-like toxin in the monarch butterfly,Danaus plexippusL.J. Physiol. 178:290–304.Google Scholar
  25. Pliske, T.E. 1975. Courtship behaviour and use of chemical communication by males of certain species of ithomiine butterflies (Nymphalidae: Lepidoptera).Ann. Entomol. Soc. Am. 68:935–942.Google Scholar
  26. Rothschild, M. 1985. British aposematic Lepidoptera, pp. 9–62,in J. Heath (ed.). The Moths and Butterflies in Great Britain and Ireland, Vol. 2. Harley Books, Colchester.Google Scholar
  27. Rothschild, M., andReichstein, T. 1976. Some problems associated with the storage of cardiac glycosides by insects.Nova Acta Leopoldina Suppl. 7:507–550.Google Scholar
  28. Rothschild, M., Aplin, R.T., Cockrum, P.A., Edgar, J.A., Fairweather, P., andLees, R. 1979. Pyrrolizidine alkaloids in arctiid moths (Lep.) with a discussion on host plant relationships and the role of these secondary plant substances in the Arctiidae.Biol. J. Linn. Soc. 12:305–326.Google Scholar
  29. Schneider, D., Boppré, M., Zweig, J., Horsley, S.B., Bell, T.W., Meinwald, J., Hansen, K., andDiehl, E.W. 1982. Scent organ development inCreatonotos moths: Regulation by pyrrolizidine alkaloids.Science 215:1264–1265.Google Scholar
  30. Scudder, G.G.E., Moore, C.B., andIsman, M.B. 1986. Sequestration of cardenolides inOncopeltus fasciatus: Morphological and physiological adaptations.J. Chem. Ecol. 12:1171–1187.Google Scholar
  31. Vrieling, K. 1991. Costs and benefits of alkaloids ofSenecio jacobaeaL. PhD thesis. University of Leiden, Leiden, The Netherlands.Google Scholar
  32. Wink, M. 1992. The role of quinolizidine alkaloids in plant-insect interactions, pp. 131–166,in E.A. Bernays (ed.). Insect-Plant Interactions, Vol. 4. CRC Press, London.Google Scholar
  33. Wink, M., andSchneider, D. 1988. Carrier-mediated uptake of pyrrolizidine alkaloids in larvae of the alkaloid exploiting moth,Creatonotos transiens.Naturwissenschaften 75:524–525.Google Scholar
  34. Wink, M., Schneider, D., andWitte, L. 1988. Biosynthesis of pyrrolizidine alkaloid-derived pheromones in the arctiid mothCreatonotos transiens: Stereochemical conversion of heliotrine.Z. Naturforsch. 43c:737–741.Google Scholar
  35. Wink, M., Montllor, C.B., Bernays, E.A., andWitte, L. 1991.Uresiphita reversalis (Lepidoptera: Pyralidae): Carrier-mediated uptake and sequestration of quinolizidine alkaloids obtained from the host plantTeline monspessulana.Z. Naturforsch. 46c:1080–1088.Google Scholar
  36. Wunderer, H., Hansen, K., Bell, T.W., Schneider, D., andMeinwald, J. 1986. Male and female pheromones in the behaviour of two Asian moths,Creatonotos (Lepidoptera: Arctiidae).Exp. Biol. 46:11–22.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • E. Von Nickisch-Rosenegk
    • 1
  • M. Wink
    • 1
  1. 1.Institut für Pharmazeutische BiologieUniversität HeidelbergHeidelbergGermany

Personalised recommendations