Plant Systematics and Evolution

, Volume 194, Issue 1–2, pp 55–67 | Cite as

Floral volatiles fromClarkia breweri andC. concinna (Onagraceae): Recent evolution of floral scent and moth pollination

  • Robert A. Raguso
  • Eran Pichersky


Clarkia breweri (Onagraceae) is the only species known in its genus to produce strong floral fragrance and to be pollinated by moths. We used gas chromatography-mass spectrometry (GC-MS) to identify 12 abundant compounds in the floral headspace from two inbred lines ofC. breweri. These volatiles are derived from two biochemical pathways, one producing acyclic monoterpenes and their oxides, the other leading from phenylalanine to benzoate and its derivatives. Linalool and linalool oxide (pyran form) were the most abundant monoterpenoids, while linalool oxide (furan form) was present at lower concentrations. Of the aromatic compounds detected, benzyl acetate was most abundant, whereas benzyl benzoate, eugenol, methyl salicylate, and vanillin were present as minor constituents in all floral samples. The two inbredC. breweri lines differed for the presence of the additional benzenoid compounds isoeugenol, methyleugenol, methylisoeugenol, and veratraldehyde. We also analyzed floral headspace fromC. concinna, the likely progenitor ofC. breweri, whose flowers are odorless to the human nose. Ten volatiles (mostly terpenoids) were detected at low concentrations, but only when headspace was collected from 20 or more flowers at a time. Trans-β-ocimene was the most abundant floral compound identified from this species. Our data are consistent with the hypothesized recent evolution of floral scent production and moth pollination inC. breweri.

Key words

Onagraceae Clarkia Gas chromatography mass spectrometry monoterpenes benzyl esters floral fragrances intraspecific variation moth pollination 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker, H., 1961: The adaptation of flowering plants to nocturnal and crepuscular pollinators. — Quart. Rev. Biol.36: 64–73.Google Scholar
  2. Brantjes, N., 1973: Sphingophilous flowers, function of their scent. — InBrantjes, N., (Ed.): Pollination and dispersal, pp. 27–46. — Nijmwegen: Dept. Botany.Google Scholar
  3. —, 1978: Sensory responses to flowers in night-flying moths. — InRichards, A. J., (Ed.): The pollination of flowers by insects, pp. 13–19. — London: Academic Press.Google Scholar
  4. Cantelo, W., Jacobson, M., 1979a: Phenylacetaldehyde attracts moths to bladder flower and to blacklight traps. — Env. Ent.8: 444–447.Google Scholar
  5. —, —, 1979b: Corn silk volatiles attract many pest species of moths. — J. Environ. Sci. Health,A14 (8): 695–707.Google Scholar
  6. Cori, O., Chayet, L., Perez, L., Bunton, C., Hachey, D., 1986: Rearrangement of linalool, geraniol and nerol and their derivatives. — J. Org. Chem.51: 1310–1316.Google Scholar
  7. Dodson, C., Dressler, R., Hills, H., Adams, R., Williams, N., 1969: Biologically active compounds in orchid fragrances. — Science164: 1243–1249.Google Scholar
  8. Efron, B., 1982: The jacknife, bootstrap and other resampling plants. — Philadelphia, PA: Society for Industrial and Applied Mathematics.Google Scholar
  9. Gabel, B., Thiery, D., Suchy, V., Marion-Poll, F., Hradsky, P., Farkas, P., 1992: Floral volatiles ofTanacetum vulgare attractive toLobesia botrana females. — J. Chem. Ecol.18: 693–700.Google Scholar
  10. Galen, C., Kevan, P., 1983: Bumblebee foraging and floral scent dimorphism:Bombus kirbyellus andPolemonium viscosum. — Canad. J. Zool.61: 1207–1213.Google Scholar
  11. Gottlieb, L. D., Weeden, N. F., 1979: Gene duplication and phylogeny inClarkia. — Evolution33: 1024–1039.Google Scholar
  12. Grant, V., 1983: The systematic and geographical distribution of hawkmoth flowers in the temperate North American flora. — Bot. Gaz.144: 439–449.Google Scholar
  13. Gregg, K., 1983: Variation in floral fragrances and morphology: incipient speciation inCycnoches? — Bot. Gaz.144: 566–576.Google Scholar
  14. Gregory, D., 1963: Hawkmoth pollination in the genusOenothera. — Aliso5: 357–384.Google Scholar
  15. —, 1964: Hawkmoth pollination in the genusOenothera. — Aliso5: 385–419.Google Scholar
  16. Groth, I., Bergstrom, G., Pellmyr, O., 1987: Floral fragrances inCimicifuga: chemical polymorphism and incipient speciation inCimicifuga simplex. — Biochem. Syst. Ecol.15: 441–444.Google Scholar
  17. Heath, R., Landolt, P., Dueben, B., Lenczewski, B., 1992: Identification of floral compounds of night-blooming jessamine attractive to cabbage looper moths. — Env. Ent.21: 854–859.Google Scholar
  18. Henning, J., Teuber, L., 1992: Combined gas chromatography-electroantennogram characterization of alfalfa floral volatiles recognized by honey bees (Hymenoptera: Apidae). — J. Econ. Ent.85: 226–232.Google Scholar
  19. Hills, H. G., Williams, N. W., Dodson, C. H., 1972: Floral fragrances and isolating mechanisms in the genusCatasetum (Orchidaceae). — Biotropica4: 61–76.Google Scholar
  20. Kaiser, R., 1991: Trapping, investigation, and reconstitution of floral scents. — InMüller, P., Lamparsky, D., (Eds): Perfume: art, science, and technology, pp. 213–248. — New York: Elsevier.Google Scholar
  21. Knudsen, J. T., Tollsten, L., 1993: Trends in floral scent chemistry in pollination syndromes: floral scent composition in moth-pollinated taxa. — Bot. J. Linn. Soc.113: 263–284.Google Scholar
  22. —, —,Bergström, G., 1993: Floral scents—a checklist of volatile compounds isolated by head-space techniques. — Phytochemistry33: 253–280.Google Scholar
  23. Lewis, H., 1962: Catastrophic selection as a factor in speciation. — Evolution16: 257–271.Google Scholar
  24. —,Lewis, M., 1955: The genusClarkia. — Univ. of Calif. Publ. Bot.20: 241–392.Google Scholar
  25. Liu, G., Liu, H., Liu, T., 1991: Research on the components of volatile oils ofOenothera erythrosepala. — Chinese Medic. Materials14: 36–37.Google Scholar
  26. Loughrin, J., Hamilton-Kemp, T., Andersen, R., Hildebrand, D., 1990: Headspace compounds from flowers ofNicotiana tabacum and related species. — J. Agric. Food Chem.38: 455–460.Google Scholar
  27. MacSwain, J., Raven, P., Thorp, R., 1973: Comparative behavior of bees andOnagraceae. IV.Clarkia bees of the western United States. — Univ. of Calif. Publ. Ent.70: 1–80.Google Scholar
  28. Morgan, A. C., Lyon, S. C., 1928: Notes on amyl salicylate as an attractant to the tobacco hornworm moth. — J. Econ. Ent.21: 189–191.Google Scholar
  29. Nilsson, L. A., 1983: Processes of isolation and introgressive interplay betweenPlatanthera bifolia andP. chlorantha (Orchidaceae). — Bot. J. Linn. Soc.87: 325–350.Google Scholar
  30. Omata, A., Yomogida, K., Nakamura, S., Hashimoto, S., Arai, T., Furukawa, K., 1991: Volatile components ofPlumeria flowers, part 1.Plumeria rubra formaacutifolia “Common Yellow”. — Flav. Fragr. J.6: 277–279.Google Scholar
  31. Pellmyr, O., 1986: Three pollination morphs inCimicifuga simplex: incipient speciation due to inferiority in competition. — Oecologia78: 304–307.Google Scholar
  32. Pichersky, E., Raguso, R. A., Lewinsohn, E., Croteau, R., 1994: Floral scent production inClarkia (Onagraceae). I. Localization and developmental modulation of monoterpene emission and linalool synthase activity. — Plant Physiol.106 (in press).Google Scholar
  33. Raven, P., 1979: A survey of reproductive biology inOnagraceae. — New Zealand J. Bot.17: 575–593.Google Scholar
  34. Rothman, E. D., Ericson, W. A., 1987: Statistics: methods and applications. 2nd edn. — Dubuque: Kendall/Hunt.Google Scholar
  35. Schnitzler, J., Madlung, J., Rose, A., Ulrich-Seitz, H., 1992: Biosynthesis of p-hydroxybenzoic acid in elicitor-treated carrot cell cultures. — Planta188: 594–600.Google Scholar
  36. Stebbins, G. L., 1970: Adapative radiation in reproductive characteristics in angiosperms, I: pollination mechanisms. — Annu. Rev. Ecol. Syst.1: 307–326.Google Scholar
  37. Stern, W., Curry, K., Whitten, W. M., 1986: Staining fragrance glands in orchid flowers. — Bull. Torrey Bot. Club113: 288–297.Google Scholar
  38. —, —,Pridgeon, A., 1987: Osmophores ofStanhopea (Orchidaceae). — Amer. J. Bot.74: 1323–1331.Google Scholar
  39. Teranishi, R., Buttery, R., Kint, S., Takeoka, G., 1991: Chemical composition ofGaura drummondii flower volatiles. — J. Ess. Oil Res.3: 1–2.Google Scholar
  40. Thien, L., Heimermann, W., Holman, R., 1975: Floral odors and quantitative taxonomy ofMagnolia andLiriodendron. — Taxon24: 557–568.Google Scholar
  41. Tollsten, L., Bergström, J., 1989: Variation and post-pollination changes in floral odours released byPlatanthera bifolia (Orchidaceae). — Nordic J. Bot.9: 359–362.Google Scholar
  42. Wagner, W., 1981:Oenothera acutisima (Onagraceae), a new species for northwestern Colorado and adjacent Utah. — Syst. Bot.6: 153–158.Google Scholar
  43. —, 1986: New taxa inOenothera (Onagraceae). — Ann. Missouri Bot. Gard.73: 475–480.Google Scholar
  44. Williams, N., Whitten, W. M., 1983: Orchid floral fragrances and male euglossine bees: methods and advances in the last sesquidecade. — Biol. Bull.164: 355–395.Google Scholar
  45. Yazaki, K., Heide, L., Tabata, M., 1991: Formation of p-hydroxybenzoic acid from p-coumaric acid by cell free extract ofLithospermum erythrorhizon cell cultures. — Phytochemistry30: 2233–2236.Google Scholar
  46. Zheng, Y., Xu, H., Sun, Y., Wu, Z., Liu, M., 1989: The analysis of aroma components forOenothera odorata fresh flowers. — Acta Bot. Sinica31: 69–72.Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Robert A. Raguso
    • 1
  • Eran Pichersky
    • 1
  1. 1.Department of BiologyUniversity of MichiganAnn ArborUSA

Personalised recommendations