Plant Systematics and Evolution

, Volume 196, Issue 3–4, pp 227–241 | Cite as

Telomere sequence localization and karyotype evolution in higher plants

  • J. Fuchs
  • A. Brandes
  • I. Schubert
Article

Abstract

Data for chromosomal localization of theArabidopsis-type of telomeric sequence repeats (TTTAGGG)n are compiled for 44 species belonging to 14 families of angiosperms, gymnosperms and bryophytes. For 23 species and seven families this is the first report. Species of all families, except theAlliaceae, revealed these sequences at their chromosome termini. This indicates thatArabidopsis-type telomeric repeats are highly conserved. It is inferred that they represent the basic telomere sequence of higher plant phyla. In theAlliaceae, a deviating sequence (and mechanism?) for the stabilization of chromosome termini has possibly evolved secondarily. Nine species revealed interstitial telomeric sequences in addition to the terminal ones, in three species (Vicia faba, Pinus elliottii, P. sylvestris) also at centromeric positions. Interstitial telomeric sequences may indicate karyotype reconstructions, in particular alterations of chromosome numbers by chromosome fusion — or inversions with one breakpoint within the terminal array of repeats. They may contribute to stabilization of chromosome breaks, especially centric fissions, and increase the frequency of meiotic and illegitimate recombination.

Key words

Angiosperms gymnosperms bryophytes Telomeres fluorescent in situ hybridization karyotype evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashley, T., Ward, D. C., 1993: A “hot spot” of recombination coincides with an interstitial telomeric sequence in the Armenian hamster. — Cytogenet. Cell Genet.62: 169–171.Google Scholar
  2. Babcock, E. B., Stebbins, G. L., 1938: The American species ofCrepis. — Publs Carnegie Inst.504. — Washington: Carnegie Institute.Google Scholar
  3. Barnes, S. R., James, A. M., Jamieson, G., 1985: The organisation, nucleotide sequence, and chromosomal distribution of a satellite DNA fromAllium cepa. — Chromosoma92: 185–192.Google Scholar
  4. Bedbrook, J. R., O'Dell, J. J. M., Thompson, R. D., Flavell, R. B., 1980: A molecular description of telomeric heterochromatin inSecale species. — Cell19: 545–560.Google Scholar
  5. Biessmann, H., Mason, J. M., 1992: Genetics and molecular biology of telomeres. — Adv. Genet.30: 185–249.Google Scholar
  6. —, 1994: Telomeric repeat sequences. — Chromosoma103: 154–161.Google Scholar
  7. Braselton, J. P., 1972: The ultrastructure of the non-localized kinetochores ofLuzula andCyperus. — Chromosoma36: 89–99.Google Scholar
  8. Broun, P., Ganal, M. W., Tanksley, S. D., 1992: Telomeric arrays display high levels of heritable polymorphism among closely related plant varieties. — Proc. Natl. Acad. Sci. USA89: 1354–1357.Google Scholar
  9. Carmona, M. J., Morcillo, G., Galler, R., Martinez-Salas, E., de la Campa, A. G., Diez, J. L., Edström, J. E., 1985: Cloning and molecular characterization of a telomeric sequence from a temperature-induced Balbiani ring. — Chromosoma92: 108–115.Google Scholar
  10. Cox, A. V., Bennett, S. T., Parokonny, A. S., Kenton, A., Callimassia, M. A., Bennett, M. D., 1993: Comparison of plant telomere locations using a PCR-generated synthetic probe. — Ann. Bot.72: 239–247.Google Scholar
  11. Emery, H. S., Weiner, A. M., 1981: An irregular satellite sequence is found at the termini of the linear extrachromosomal rDNA inDicotystelium discoideum. — Cell26: 411–419.Google Scholar
  12. Fang, G., Cech, T. R., 1993: The β-subunit ofOxytricha telomere-binding protein promotes G-quartet formation by telomeric DNA. — Cell74: 875–885.Google Scholar
  13. Forney, J., Henderson, E. R., Blackburn, E. H., 1987: Identification of the telomeric sequence of the acellular slime moldsDidymium iridis andPhysarum polycephalum. — Nucleic Acids Res.15: 9143–9152.Google Scholar
  14. Fuchs, J., Schubert, I., 1995: Localization of seed protein genes on metaphase chromosomes ofVicia faba via fluorescent in situ hybridization. — Chromosome Res.3: 94–100.Google Scholar
  15. Ganal, M. W., Lapitan, N. L. V., Tanksley, S. D., 1991: Macrostructure of the tomato telomeres. — Pl. Cell3: 87–94.Google Scholar
  16. Greider, C. W., Blackburn, E. H., 1989: A telomeric sequence in the RNA ofTetrahymena telomerase required for telomere repeat synthesis. — Nature337: 331–337.Google Scholar
  17. Hanelt, P., Mettin, D., 1966: Zytosystematische Untersuchungen in der Artengruppe umVicia sativa L. II. — Kulturpflanze14: 137–161.Google Scholar
  18. Ijdo, J. W., Baldini, A., Ward, D. C., Reeders, S. T., Wells, R. A., 1991a: Origin of human chromosome 2: an ancestral telomere-telomere fusion. — Proc. Natl. Acad. Sci. USA88: 9051–9055.Google Scholar
  19. —, 1991b: Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. — Nucleic Acids Res.19: 4780.Google Scholar
  20. Katinka, M. D., Bourgain, F. M., 1992: Interstitial telomeres are hotspots for illegitimate recombination with DNA molecules injected into the macronucleus ofParamecium primaurelia. — Embo J.11: 725–732.Google Scholar
  21. Kilian, A., Kleinhofs, A., 1992: Cloning and mapping of telomere-associated sequences fromHordeum vulgare L. — Mol. Gen. Genet.235: 153–156.Google Scholar
  22. Lee, C., Sasi, R., Lin, C. C., 1993: Interstitial localization of telomeric DNA sequences in the Indian muntjac chromosomes: further evidence for tandem chromosome fusions in the karyotypic evolution of the Asian muntjacs. — Cytogenet. Cell Genet.63: 156–159.Google Scholar
  23. Matzk, F., 1981: Successful crosses betweenFestuca arundinacea Schreb. andDactylis glomerata L. — Theor. Appl. Genet.60: 119–122.Google Scholar
  24. Meyne, J., Baker, R. J., Hobart, H. H., Hsu, T. C., Ryder, O. A., Ward, O. G., Wiley, J. E., Wurster-Hill, D. H., Yates, T. L., Moyzis, R. K., 1990: Distribution of non-telomeric sites of the (TTAGGG)n telomeric sequence in vertebrate chromosomes. — Chromosoma99: 3–10.Google Scholar
  25. Morin, G. B., 1991: Recognition of a chromosome truncation site associated with alphathalassaemia by human telomerase. — Nature353: 454–456.Google Scholar
  26. Nagl, W., 1991: Two human DNA sequences (aromatase, telomere) detected inPhaseolus (Fabaceae) by respectively blot and in situ hybridization. — Polish Bot. Stud.2: 159–164.Google Scholar
  27. Okazaki, S., Tsuchida, K., Maekawa, H., Ishikawa, H., Fujiwara, H., 1993: Identification of a pentanucleotide telomeric sequence (TTAGG)n, in the silkwormBombyx mori and in other insects. — Mol. Cell. Biol13: 1424–1432.Google Scholar
  28. Östergren, G., Östergren, K., 1983: An X-ray induced Robertsonian fission inTradescantia that gave rise to transmissible dicentric chromosomes. — InBrandham, P. E., Bennett, M. D., (Eds): Kew Chromosome Conference II, p. 357. — London: Allen & Unwin.Google Scholar
  29. Parokonny, A. S., Kenton, A. Y., Gleba, Y. Y., Bennett, M. D., 1992: Genome reorganization inNicotiana asymmetric somatic hybrids analyzed by in situ hybridization. — Pl. J.2: 863–874.Google Scholar
  30. Pelliccia, F., Volpi, E. V., Lanza, V., Gaddini, L., Baldini, A., Rocchi, A., 1994: Telomeric sequences ofAsellus aquaticus (Crust. Isop.). — Heredity72: 78–80.Google Scholar
  31. Petracek, M. E., Lefebvre, P. A., Silflow, C. D., Berman, J., 1990:Chlamydomonas telomere sequences are A+T-rich but contain three consecutive G-C base pairs. — Proc. Natl. Acad. Sci. USA87: 8222–8226.Google Scholar
  32. Rawlins, D. J., Highett, M. I., Shaw, P. J., 1991: Localization of telomeres in plant interphase nuclei by in situ hybridization and 3D confocal microscopy. — Chromosoma100: 424–431.Google Scholar
  33. Reimann, N., Rogalla, P., Kazmierczak, B., Bonk, U., Nolte, I., Grzonka, T., Bartnitzke, S., Bullerdiek, J., 1994: Evidence that metacentric and submetacentric chromosomes in canine tumors can result from telomeric fusions. — Cytogenet. Cell Genet.67: 81–85.Google Scholar
  34. Richards, E. J., Ausubel, F. M., 1988: Isolation of a higher eukaryotic telomere fromArabidopsis thaliana. — Cell53: 127–136.Google Scholar
  35. Röder, M. S., Lapitan, N. L. V., Sorrells, M. E., Tanksley, S. D., 1993: Genetic and physical mapping of barley telomeres. — Mol. Gen. Genet.238: 294–303.Google Scholar
  36. Saiga, H., Edström, J.-E., 1985: Long tandem arrays of complex repeat units inChironomus telomeres. — Embo J.4: 799–804.Google Scholar
  37. Schmid, M., Feichtinger, W., Nanda, I., Schakowski, R., Visbal Garcia, R., Manzanilla Puppo, J., Fernandez Badillo, A., 1994: An extraordinarily low diploid chromosome number in the reptileGonatodes taniae (Squamata, Gekkonidae). — J. Heredity85: 255–260.Google Scholar
  38. Schubert, I., 1984: Mobile nucleolus organizing regions (NORs) inAllium (Liliaceae s. l.)? — Inferences from the specifity of silver staining. — Pl. Syst. Evol.144: 291–305.Google Scholar
  39. —, 1992: Telomeric polymorphism inVicia faba. — Biol. Zentralblatt111: 164–168.Google Scholar
  40. —, 1985: A new mechanism for altering chromosome number during karyotype evolution. — Theor. Appl. Genet.70: 213–221.Google Scholar
  41. —, 1990: Alteration by centric fission of the diploid chromosome number inVicia faba L. — Genetica81: 67–69.Google Scholar
  42. —, 1985: In situ hybridization confirms jumping nucleolus organizing regions inAllium. — Chromosoma92: 143–148.Google Scholar
  43. —, 1992: Telomeric signals in Robertsonian fusion and fission chromosomes: implications for the origin of pseudoaneuploidy. — Cytogenet. Cell Genet.59: 6–9.Google Scholar
  44. Schwarzacher, T., Heslop-Harrison, J. S., 1991: In situ hybridization to plant telomeres using synthetic oligomers. — Genome34: 317–323.Google Scholar
  45. Shampay, J., Szostak, J. W., Blackburn, E. H., 1984: DNA sequences of telomeres maintained in yeast. — Nature310: 154–157.Google Scholar
  46. Singer, M. S., Gottschling, D. E., 1994: TLC1: template RNA component ofSaccharomyces cerevisiae telomerase. — Science266: 404–409.Google Scholar
  47. Tommerup, H., Dousmanis, A., DeLange, T., 1994: Unusual chromatin in human telomeres. — Mol. Cell. Biol.14: 5777–5785.Google Scholar
  48. Wang, S., Lapitan, N. L. V., Tsuchiya, T., 1991: Characterization of telomeres inHordeum vulgare chromosomes by in situ hybridization. 1. Normal diploid barley. — Japan J. Genet.66: 313–316.Google Scholar
  49. Wang, S.-S., Zakian, V. A., 1990: Telomere-telomere recombination provides an express pathway for telomere acquisition. — Nature345: 456–458.Google Scholar
  50. Werner, J. E., Kota, R. S., Gill, B. S., Endo, T. R., 1992: Distribution of telomeric repeats and their role in the healing of broken chromosome ends in wheat. — Genome35: 844–848.Google Scholar
  51. Wilkie, A. O. M., Lamb, J., Harris, P. C., Finney, R. D., Higgs, D. R., 1990: A truncated human chromosome 16 associated with α-thalassaemia is stabilized by addition of telomeric repeat (TTAGGG)n. — Nature346: 868–871.Google Scholar
  52. Young, B. S., Pession, A., Traverse, K. L., French, C., Pardue, M. L., 1983: Telomere regions inDrosophila share complex DNA sequences with pericentric heterochromatin. — Cell34: 85–94.Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • J. Fuchs
    • 1
  • A. Brandes
    • 1
  • I. Schubert
    • 1
  1. 1.Institut für Pflanzengenetik und KulturpflanzenforschungGaterslebenFederal Republic of Germany
  2. 2.John Innes CentreNorwich Research Park ColneyNorwichUK

Personalised recommendations