Plant Systematics and Evolution

, Volume 194, Issue 3–4, pp 133–162 | Cite as

Megaspore wall growth inSelaginella (Lycopodiatae)

  • John R. Rowley
  • Marta A. Morbelli
Article

Abstract

Different stages of megaspore and megasporangial development inSelaginella argentea (Wallich)Spring,S. bigelowiiUnerw., andS. kraussiana (Kze.)A. Br. have been seen and studied. Megaspore wall units give positive reactions for polysaccharides and protein in young megaspores, and become the thick and resistant wall typical of the genus only later.—Units forming the exospore and the spaces between units enlarge from widths of 5–10nm early during development up to over 200 nm at pregermination stages. The spaces enlarge first. Initially they are circular and mostly about 70 nm in diameter. Later, spaces toward the inner part of the exospore enlarge more than those near the outer surface. During pregermination, wall spaces range in size from 4 to 50 times the width of units with the larger spaces located near the inner surface. As a result the exospore would be under tension to spring outward during germination when the laesurae are lysed.—A gap in the exospore, shaped like a half-moon in polar sections, forms in equatorial and distal portions of the spore. This gap becomes enormous, three times the volume of the central space plus the mesospore, and is filled with lipids and other nutrients. Late in development, during the period of tapetal cell degeneration, the gap contents are moved into the central space and the gap is closed.—Late in development the mesospore is degraded. Its products, along with gap contents, seem to be added to the contents of the central cavity and appear as reserve storage globules. A primary wall-like endospore is formed during this period, at the inner surface of the exospore. During germination this endospore develops further at its inner surface.—Changes in the size and shape of megasporangia occur independently of the size of megaspores.

Key words

Lycopodiatae Selaginella Megaspores plasmodesmata wicks wall growth gap laesurae tapetum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnoldi, W., 1896: Die Entwicklung des weiblichen Vorkeims bei den heterosporen Lycopodiaceen. — Bot. Zeit.54: 159–168.Google Scholar
  2. Bland, D. E., Foster, R. C., Logan, A. F., 1971: The mechanism of permanganate and osmium tetroxide fixation and the distribution of lignin in the cell walls ofRinus radiata. — Holzforschung25: 137–143.Google Scholar
  3. Bruchmann, H., 1897: Untersuchungen überSelaginella spinulosa A. Br. — Gotha.Google Scholar
  4. —, 1912: Zur Embryologie der Selaginellaceen. — Flora104: 180–224.Google Scholar
  5. Buchen, B., Sievers, A., 1978a: Megasporogenese vonSelaginella. I. Ultrastrukturelle und cytochemische Untersuchungen zur Sekretion von Polysacchariden. — Protoplasma96: 293–317.Google Scholar
  6. —, 1978b: Megasporogenese vonSelaginella. II. Ultrastrukturelle und cytochemische Untersuchungen zur Sekretion von Lipiden. — Protoplasma96: 319–328.Google Scholar
  7. —, 1981: Sporogenesis and pollen grain formation. — InKiermayer, O., (Ed.): Cytomorphogenesis in plants, pp. 349–376. Cell Biology Monographs8. — New York, Wien: Springer.Google Scholar
  8. Campbell, D. H., 1895: Structure and development of the mosses and ferns. — London: Macmillan.Google Scholar
  9. —, 1902: Studies on the gametophyte ofSelaginella. — Ann. Bot. (London)16: 419–428.Google Scholar
  10. Denke, P., 1902: Sporenentwicklung beiSelaginella. — Beih. Bot. Centralbl.12: 182–199.Google Scholar
  11. Dumas, C., Charriere-Ladreix, Y., 1979: Étude cytochimique des polyphénols: généralités concernant les lignines et les sécrétions de tannins et d'aglycones flavoniques. — Bull. Soc. Bot. France, Lettres bot.2: 123–142.Google Scholar
  12. Fitting, H., 1900: Bau und Entwicklungsgeschichte der Makrosporen vonIsoëtes undSelaginella und ihre Bedeutung für die Kenntnis des Wachstums pflanzlicher Zellmembranen. — Bot. Zeit.58: 107–165.Google Scholar
  13. Foster, R. C., 1981: Polysaccharides in soil fabrics. — Science214: 665–667.Google Scholar
  14. Gould, J. S., Vrba, E. S., 1982: Exaptation—a missing term in the science of form. — Paleobiology8: 4–15.Google Scholar
  15. Graustein, J. E., 1930: Evidences of hybridism inSelaginella. — Bot. Gaz.90: 46–74.Google Scholar
  16. Heinsen, E., 1894: Die Makrosporen und das weibliche Prothalium vonSelaginella. — Flora (Jena)78: 466–496.Google Scholar
  17. Horner, H. T., Beltz, C. K., 1970: Cellular differentiation of heterospory inSelaginella. — Protoplasma71: 335–341.Google Scholar
  18. Lugardon, B., 1971a: L'endospore et la “pseudo-endospore” des spores des Filicinées isosporées. — Compt. Rend. Acad. Sci. Paris273: 675–678.Google Scholar
  19. —, 1971b: Contribution à la connaissance de la morphogénèse et da la structure des parois sporales chez les Filicinées isosporées. — Thèse Doct. Sci. Nat., Univ. P. Sabatier, Toulouse.Google Scholar
  20. —, 1973: Sur les parois sporales dePsilotum triquetrum Sw. et leur structure fine. — Compt. Rend. Acad. Sci. Paris276: 1277–1280.Google Scholar
  21. —, 1978: Isospore and microspore walls of living pteridophytes: identification possibilities with different observation instruments. — IV Int. Palynol. Conf.,Lucknow 1: 152–163.Google Scholar
  22. —, 1986: Données ultrastructurales sur la fonction de l'exospore chez les Ptéridophytes. — InBlackmore, S., Ferguson, I. K., (Eds): Pollen and spores: form and function, pp. 252–264. — London: Academic Press.Google Scholar
  23. Lyon, F. M., 1901: A study of the sporangia and gametophytes ofSelaginella apus andSelaginella rupestris. — Bot. Gaz.32: 124–170.Google Scholar
  24. —, 1905: The spore coats ofSelaginella. — Bot. Gaz.40: 285–295.Google Scholar
  25. Marinozzi, V., 1968: Phosphotungstic acid (PTA) as a stain for polysaccharides and glycoproteins in electron microscopy. — Proc. 4th European Regional Conference on EM, pp. 55–56. — Rome.Google Scholar
  26. Mayo, M. A., Cocking, E. C., 1969: Pinocytotic uptake of polystyrene latex particles by isolated tomato fruit protoplasts. — Protoplasma68: 223–230.Google Scholar
  27. Morbelli, M. A., 1992: Megaspore wall inLycophyta. Ultrastructure and function. — 8th Int. Palynol. Congress, p. 104 (Abstract). — Alix-en-Provence, France.Google Scholar
  28. - 1994: Megaspore wall inLycophyta. Ultrastructure and function. — Rev. Palaeobot. Palynol. (in press).Google Scholar
  29. -Rowley, J. R., 1992: Megaspore development inSelaginella. I. Wicks, their presence, ultrastructure and presumed function. — 8th Int. Palynol. Congress, p. 104 (Abstract). — Aix-en-Provence, France.Google Scholar
  30. —, 1993: Megaspore development inSelaginella. I. “Wicks”, their presence, ultrastructure, and presumed function. — Sex. Pl. Reprod.6: 98–107.Google Scholar
  31. Pettitt, J. M., 1966: Exine structure in some fossil and recent spores and pollen as revealed by light and electron microscopy. — Bull. Brit. Museum, Nat. Hist., Geol.13: 223–257.Google Scholar
  32. —, 1971a: Developmental mechanisms in heterospory. I. Megasporocyte degeneration inSelaginella. — Bot. J. Linn. Soc.64: 237–246.Google Scholar
  33. —, 1971b: Some ultrastructural aspects of sporoderm formation in pteridophytes. — InErdtman, G., Sorsa, P., (Eds): Pollen and spore morphology/plant taxonomy.Pteridophyta, pp. 227–251. — Stockholm: Almqvist & Wiksell.Google Scholar
  34. —, 1976: A route for the passage of substances through the developing pteridophyte exine. — Protoplasma88: 117–131.Google Scholar
  35. —, 1979a: Developmental mechanisms in heterospory: Cytochemical demonstration of spore-wall enzymes associated with β-lectins, polysaccharides and lipids in water ferns. — J. Cell Sci.38: 61–82.Google Scholar
  36. —, 1979b: Ultrastructure and cytochemistry of spore wall morphogenesis. — InDyer, A. F., (Ed.): The experimental biology of ferns, pp. 213–252. — London: Academic Press.Google Scholar
  37. Pfeffer, W. F. P., 1871: Die Entwicklung des Keimes der GattungSelaginella. — Hansteins Bot. Abhandl. Morph. Physiol.1: 1–80.Google Scholar
  38. Pieniazek, S. A., 1938: Über die Entwicklung und das Wachstum der Makrosporen-Membranen beiSelaginella. — Compt. Rend. Soc. Sci. Varsovie31: 211–230.Google Scholar
  39. Ramalingam, K., Ravinkranath, M. H., 1970: Histochemical significance of green metachromasia to toluidine blue. — Histochemie24: 322–327.Google Scholar
  40. Rambourg, A., Hernandez, W., Leblond, C. P., 1969: Detection of complex carbohydrates in the Golgi apparatus of rat cells. — J. Cell Biol.40: 395–414.Google Scholar
  41. Robert, D., 1971a: Le gametophyte femelle deSelaginella kraussiana (Kunze)A. Br. I. Organization generale de la megaspore. Le diaphragme et l'endospore. Les reserves. — Rev. Cytol. Biol. Veg.34: 93–164.Google Scholar
  42. —, 1971b: Le gametophyte femelle deSelaginella kraussiana Kunze (A. Br.). II. Organisation histologique du tissu reproducteur et principaux aspects de la dedifferenciation cellulaire preparatoire a l'oogenese. — Rev. Cytol. Biol. Veg.34: 189–232.Google Scholar
  43. —, 1972a: Le gametophyte femelle deSelaginella denticulata (L.)Spring. — Rev. Cytol. Biol. Veg.35: 243–280.Google Scholar
  44. —, 1972b: Quelques particularites de la reproduction chez les Selaginelles. — Bull. Soc. Bot. France119: 373–382.Google Scholar
  45. Roland, J.-C., Lembi, C. A., Morre, J., 1972: Phosphotungstic acid-chromic acid selective electron-dense stain for plasma membranes of plant cells. — Stain Technol.47: 195–200.Google Scholar
  46. Rowley, J. R., 1994: Exine origin, development, and structure in pteridophytes, gymnosperms, and angiosperms. — InJansonius, J., McGregor, D. C., (Eds): Palynology: principles and applications, chapter 14D. — American Association of Stratigraphic Palynologists Foundation,1. (In press.)Google Scholar
  47. —, 1992: Lipid in wall and cytoplasm ofSolidago pollen. — Grana31: 273–283.Google Scholar
  48. -Morbelli, M. A., 1993: Megaspore development inSelaginella. The gap, its location and presumed function. — 15th Int. Bot. Congr., Japan, Abstr., p. 432.Google Scholar
  49. Sievers, A., Buchen, B., 1970: Über den Feinbau der wachsenden Megaspore vonSelaginella. — Protoplasma71: 267–279.Google Scholar
  50. —, 1971: Contact between the spore cytoplasm and the growing sporoderm of theSelaginella megaspore. — InBrooks, J., Grant, P. R., Muir, M., Van Gijzel, P., Shaw, G., (Eds): Sporopollenin, pp. 654–658. — London: Academic Press.Google Scholar
  51. Smith, M. M., McCully, M. E., 1978: A critical evaluation of the specificity of aniline blue induced fluorescence. — Protoplasma95: 229–254.Google Scholar
  52. Spurr, A. R., 1969: A low-viscosity epoxy resin embedding medium for electron microscopy. — J. Ultrastruct. Res.266: 31–43.Google Scholar
  53. Stainier, F., 1965: Structure et infrastructure des parois sporales chez deux Selaginelles (Selaginella myosurus etS. kraussiana). — La Cellule65: 221–344.Google Scholar
  54. Stempak, J. G., Ward, R. T., 1964: An improved staining method for electron microscopy. — J. Cell Biol.22: 697–701.Google Scholar
  55. Taylor, W. A., 1991: Ultrastructural analysis of sporoderm development in megaspores ofSelaginella galeottii (Lycophyta). — Pl. Syst. Evol.174: 171–182.Google Scholar
  56. —, 1994: Recognition and characterization of inner exospore wall layers in modern and fossil lycopsids—the mesospore. — Grana33: 44–48.Google Scholar
  57. Thiéry, J. P., 1967: Mise en évidence des polysaccharides sur coupes fines en microscopie électronique. — J. Microscopie69: 987–1018.Google Scholar
  58. Tryon, A. F., Lugardon, B., 1991: Spores of thePteridophyta. — Berlin, New York: Springer.Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • John R. Rowley
    • 1
  • Marta A. Morbelli
    • 2
  1. 1.Botaniska InstitutionenStockholms UniversitetStockholmSweden
  2. 2.Cátedra de PalinologíaMuseo de Ciencias Naturales de La PlataLa PlataArgentina

Personalised recommendations