Plant Systematics and Evolution

, Volume 204, Issue 1–2, pp 109–123 | Cite as

Phylogenetic analysis ofIridaceae with parsimony and distance methods using the plastid generps4

  • Tatiana T. Souza-Chies
  • Gabriel Bittar
  • Sophie Nadot
  • Leigh Carter
  • Evelyne Besin
  • Bernard Lejeune


A molecular phylogeny of the familyIridaceae based on the plastid generps4 was obtained using both parsimony and distance methods. Thirty-four species were examined together with eight outgroup species. Results show that theIridaceae are monophyletic, and thatIsophysis is likely to be the earliest emerging genus. SubfamilyIxioideae plus the generaAristea andNivenia form a strongly supported clade. Within subfam.Iridoideae, the tribeIrideae includes the genusBobartia (of disputed position), and the tribeMariceae includesCypella. The division ofIridoideae into tribes is consistent with their geographical distribution.

Key words

Iridaceae rpsphylogenetic tree molecular systematic chloroplast evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bittar, G., 1995: Phylogénie: histoire, concepts, principes et présentation de nouvelles méthodes d'analyse numérique de l'évolution moléculaire. — Ph.D. Dissertation, Université de Genève, Switzerland.Google Scholar
  2. -Carter, L., 1994: New probabilistic and numerical phenetics methods for inferring natural groupings and phylogenesis. — In: Proceedings of the International Meeting “Ecology and statistical methods”, Niort, France, pp. 145–150.Google Scholar
  3. Bremer, K., 1988: The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. — Evolution42: 795–803.Google Scholar
  4. Chase, M. W., Soltis, D. W., Olmstead, R. G., Morgan, D., Les, D. H., Mishler, B. D., Duvall, M. R., Price, R. A., Hills, H. G., Qiu, Y. L., Kron, K. A., Retting, J. H., Conti, E., Palmer, J. D., Manhart, J. R., Systma, K. J., Michaels, H. J., Kress, W. J., Karol, K. G., Clark, W. D., Hedren, M., Gaut, B. S., Jansen, R. K., Kim, K. J., Wimpee, C. F., Smith, J. F., Furnier, G. R., Strauss, S. H., Xiang, Q. Y., Plunkett, G. M., Soltis, P. S., Swensen, S. M., Williams, S. E., Gadek, P. A., Quinn, C. J., Eguiarte, L. E., Golenberg, E., Learn, G. H. J., Graham, S. W., Barrett, S. C. H., Dayanandan, S., Albert, V. A., 1993: Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid generbcL. — Ann. Missouri Bot. Gard.80: 528–580.Google Scholar
  5. , 1995: Molecular phylogenetics ofLilianae. — InRudall, P. J., Cribb, P. J., Cutler, D. F., Humphries, C. J., (Eds): Monocotyledons: systematics and evolution,1: pp. 109–137. — Kew: Royal Botanic Gardens.Google Scholar
  6. Clegg, M. T., Zurawski, G., 1992: Chloroplast DNA and the study of plant phylogeny: present status and future prospects. — InSoltis, P. S., Soltis, D. E., Doyle, J. J., (Eds): Molecular systematics of plants, pp. 1–13. — New York: Chapman & Hall.Google Scholar
  7. , 1994: Rates and patterns of chloroplast DNA evolution. — Proc. Natl. Acad. Sci. USA91: 6795–6801.PubMedGoogle Scholar
  8. Cronquist, A., 1981: An integrated system of classification of flowering plants. — New York: Columbia University Press.Google Scholar
  9. Dahlgren, R. M. T., Clifford, H. T., Yeo, P. F., 1985: The families of monocotyledons. — Berlin, Heidelberg, New York: Springer.Google Scholar
  10. Doyle, J. J., Doyle, J. L., 1987: A rapid DNA isolation procedure for small quantities of fresh leaf tissue. — Phytochem. Bull.19: 11–15.Google Scholar
  11. Duvall, M. R., Clegg, M. T., Chase, M. W., Clark, W. D., Kress, W. J., Hills, H. G., Eguiarte, L. E., Smith, J. F., Gaut, B. S., Zimmer, E. A., Learn, G. H., 1993: Phylogenetic hypothesis for the monocotyledons constructed fromrbcL sequence data. — Ann. Missouri Bot. Gard.80: 607–619.Google Scholar
  12. Felsenstein, J., 1985: Confidence limits on phylogenies: an approach using the bootstrap. — Evolution39: 783–791.Google Scholar
  13. Gielly, L., Taberlet, P., 1994: The use of chloroplast DNA to resolve plant phylogenies: non-coding versusrbcL sequences. — Molec. Biol. Evol.11: 769–777.PubMedGoogle Scholar
  14. Goldblatt, P., 1990: Phylogeny and classification ofIridaceae. — Ann. Missouri Bot. Gard.77: 607–627.Google Scholar
  15. , 1991: An overview of the systematics, phylogeny and biology of the AfricanIridaceae. — Contr. Bolus Herb.13: 1–74.Google Scholar
  16. , 1992: Relationships ofBobartia. — S. African J. Bot.58: 304–309.Google Scholar
  17. , 1995: Pollination biology ofLapeirousia subgenusLapeirousia (Iridaceae) in southern Africa; floral divergence and adaptation for longtongued fly pollination. — Ann. Missouri Bot. Gard.82: 517–534.Google Scholar
  18. Ham, R. C. H. J. v., Hart, H., Mes, T. H. M., Sandbrink, J. M., 1994: Molecular evolution of non-coding regions of the chloroplast genome in theCrassulaceae and related species. — Curr. Genet.25: 558–566.PubMedGoogle Scholar
  19. Hoot, S. B., Culham, A., Crane, P. R., 1995: The utility ofatpB gene sequences in resolving phylogenetic relationships: comparison withrbcL and 18S ribosomal DNA sequences in theLardizabalaceae. — Ann. Missouri Bot. Gard.82: 194–207.Google Scholar
  20. Johnson, L. A., Soltis, D. E., 1994:matK DNA sequences and phylogenetic reconstruction inSaxifragaceae s.str. — Syst. Bot.19: 143–156.Google Scholar
  21. ,, 1995: Phylogenetic inference inSaxifragaceae sensu stricto andGilia (Polemoniaceae) usingmatK sequences. — Ann. Missouri Bot. Gard.82: 149–175.Google Scholar
  22. Lamppa, G. K., Bendich, A. J., 1979: Chloroplast DNA sequence homologies among vascular plants. — Pl. Physiol.63: 660–668.Google Scholar
  23. Lavin, M., Doyle, J. J., Palmer, J. D., 1990: Evolutionary significance of the loss of the chloroplast-DNA inverted repeat in theLeguminosae subfam.Papilionoideae. — Evolution44: 390–402.Google Scholar
  24. Maddison, W. P., Maddison, D. R., 1992: MacClade: analysis of phylogeny and character evolution. Version 3.0. — Sunderland, Mass.: Sinauer.Google Scholar
  25. Manen, J. F., Natali, A., Ehrendorfer, F., 1994: Phylogeny ofRubiaceae-Rubieae inferred from the sequence of a cpDNA intergene region. — Pl. Syst. Evol.190: 195–211.Google Scholar
  26. Mes, T. H. M., Hart, H., 1994:Sedum surculosum andS. jaccardianum (Crassulaceae) share a unique 70 bp deletion in the chloroplast DNAtrnL (UAA)—trnF (GAA) intergenic spacer. — Pl. Syst. Evol.193: 213–221.Google Scholar
  27. Nadot, S., 1994: Utilisation de l'outil moléculaire pour la reconstruction d'une phylogénie des plantes monocotylédones en général et de la famille desPoaceae (Graminées) en particulier. — Ph.D. in Sciences — Dissertation, Université de Paris XI, Orsay, France.Google Scholar
  28. , Bajon, R., Lejeune, B., 1994: The chloroplast generps 4 as a tool for the study ofPoaceae phylogeny. — Pl. Syst. Evol.191: 27–38.Google Scholar
  29. , Bittar, G., Carter, L., Lacroix, R., Lejeune, B., 1995: A phylogenetic analysis of monocotyledons based on the chloroplast generps 4, using parsimony and a new numerical phenetics method. — Molec. Phylogenet. Evol.4: 257–282.PubMedGoogle Scholar
  30. Olmstead, R. G., Reeves, P. A., 1995: Evidence for the polyphyly of theScrophulariaceae based on chloroplastrbcL andndhF sequences. — Ann. Missouri Bot. Gard.82: 176–193.Google Scholar
  31. Palmer, J. D., Zamir, D., 1982: Chloroplast DNA evolution and phylogenetic relationships inLycopersicum. — Proc. Natl. Acad. Sci. USA79: 5006–5010.Google Scholar
  32. , Stein, D. B., 1986: Conservation of chloroplast genome structure among vascular plants. — Curr. Genet.10: 823–833.Google Scholar
  33. Ritland, K., Clegg, M. T., 1987: Evolutionary analysis of plant DNA sequences. — Amer. Naturalist130: S74-S100.Google Scholar
  34. Rudall, P., 1994: Anatomy and systematics ofIridaceae. — Bot. J. Linn. Soc.114: 1–21.Google Scholar
  35. Soltis, D. E., Soltis, P. S., Ness, B. D., 1989: Chloroplast-DNA variation and multiple origins of autopolyploidy inHeuchera micrantha (Saxifragaceae). — Evolution43: 650–656.Google Scholar
  36. Steele, K. P., Vilgalys, R., 1994: Phylogenetic analyses ofPolemoniaceae using nucleotide sequences of the plastid genematk. — Syst. Bot.19: 126–142.Google Scholar
  37. Swofford, D. L., 1993: PAUP 3.1: phylogenetic analysis using parsimony. — Washington, D.C.: Smithsonian Institution Press.Google Scholar
  38. Taberlet, P., Gielly, L., Pautou, G., Bouvet, J., 1991: Universal primers for amplification of three non-coding regions of chloroplast DNA. — Pl. Molec. Biol.17: 1105–1109.Google Scholar
  39. Thompson, J. D., Higgins, D. G., Gibson, T. J., 1994: Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. — Nucl. Acids Res.22: 4673–4680.PubMedGoogle Scholar
  40. Wolfe, K. H., Morden, C. W., Palmer, J. D., 1991: Ins and outs of plastid genome evolution. — Curr. Opinion Genet. Developm.1: 523–529.Google Scholar
  41. ,, Ems, S. C., Palmer, J. D., 1992: Rapid evolution of the plastid translational apparatus in a non-photosynthetic plant: loss or accelerated sequence evolution of tRNA and ribosomal protein genes. — J. Molec. Evol.35: 304–317.PubMedGoogle Scholar
  42. Zurawski, G., Clegg, M. T., 1987: Evolution of higher-plant chloroplast DNA-encoded genes: implications for structure-function and phylogenetic studies. — Annu. Rev. Pl. Physiol.38: 391–418.Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Tatiana T. Souza-Chies
    • 1
  • Gabriel Bittar
    • 2
  • Sophie Nadot
    • 1
  • Leigh Carter
    • 2
  • Evelyne Besin
    • 1
  • Bernard Lejeune
    • 1
  1. 1.Institut de Biotechnologie des PlantesUniversité de Parix XIOrsay, CedexFrance
  2. 2.Département de Chimie PhysiqueUniversité de GenèveGenèveSwitzerland

Personalised recommendations