Journal of Chemical Ecology

, Volume 9, Issue 8, pp 1107–1117 | Cite as

Seeds as allelopathic agents

  • Jacob Friedman
  • George R. Waller
Article

Abstract

Inhibitors of germination or of growth, highly diversified chemicals are commonly found in higher plants. They occur in vegetative organs as well as in seeds or other dispersal units. Nonprotein amino acids, when present, are mainly found in seeds where they can occur in extremely high concentrations. Density of seeds, rate of emanation of inhibitors, their amount and effectiveness, all determine allelopathic potential of seeds. To induce allelopathy, rate of emanation of inhibitors must be fast and of sufficient duration. Our observations in coffee seedsCoffea arabica L. indicate that rate of emanation of the inhibitor caffeine is highly enhanced during senescence of seeds, suggesting that when allelopathic potential of seeds is evaluated the presence of both young and old seeds should be considered. In many plants seeds are liberated close to the parent plant, the zone where seed-induced allelopathy may occur. Large numbers of seeds are usually produced in order to ensure establishment; greater number and mass of seeds may also increase allelopathic inhibition of competing vegetation.

Key words

Seed allelopathy germination inhibitors emanation of inhibitors from seeds caffeine Coffea arabica L. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akkerman, A.M., andVeldstra, H. 1947. The chemical nature of Knoeckemann's blastocholine fromLycopersicum esculentum. Mill.Recl. Trav. chim. Pays-Bas 66:411–412.Google Scholar
  2. Anderson, J.D., Mandava, N., andGunn, C.R. 1972. Plant growth inhibitors fromAbrus precatorius seeds.Plant Physiol. 49:1024–1026.Google Scholar
  3. Aronow, L., andKerdel-Vegas, F. 1965. Structure of the pharmacologically active factor in seeds ofLecythis ollaria.Nature 205:1185–1186.Google Scholar
  4. Baskin, F.M., Ludlow, C.J., Harris, T.K., andWolf, F.T. 1967. Psoralen, an inhibitor in the seeds ofPsoralea subacaulis (Leguminosae).Phytochemislry 6:1209–1213.Google Scholar
  5. Bell, E.A. 1972. Toxic amino acids in the Leguminosae, pp. 163–177,in J.B. Harborne (ed.). Phytochemical Ecology. Academic Press, New York.Google Scholar
  6. Bell, E.A. 1976. “Uncommon” amino acids in plants.FEES Lett. 64:29–35.Google Scholar
  7. Bell, E.A. 1978. Toxins in seeds, pp. 143–162,in J.B. Harborne (ed.). Biochemical Aspects of Plant and Animal Coevolution. Academic Press, New York.Google Scholar
  8. Bell, E.A., andJanzen, D.H. 1971. Medical and ecological considerations ofl-Dopa and 5-HTP in seeds.Nature 229:136–137.Google Scholar
  9. Bell, E.A., Fellows, L.E., andQureshi, Y. 1976. 5-Hydroxy-l-tryptophan; taxonomic character and chemical defence inGriffonia.Phytochemistry 15:823–825.Google Scholar
  10. Bewley, J.D., andBlack, M. 1982. Physiology and Biochemistry of Seeds in Relation to Germination, Vol. 2. pp. 9–11. Springer-Verlag, Berlin, Heidelberg, New York.Google Scholar
  11. Billings, W.D. 1957. Physiological ecology.Annu. Rev. Plant Physiol. 8:375–392.Google Scholar
  12. Chou, C.-H., andWaller, G.R. 1980. Isolation and identification by mass spectrometry of phytotoxins inCoffea arabica.Bot. Bull. Acad. Sin. 21:25–34.Google Scholar
  13. Cooper, R., Gottlieb, H.E., Lavie, D., andLevy, E.C. 1979. Lignans fromAegilops ovata L.Tetrahedron 35:861–868.Google Scholar
  14. Corvillon, E., Martinez-Honduwilld, C.J. 1980. Germination inhibitors in embryos and endosperm fromPinus pinea seeds.ltal. J. Biochem. 29:405–411.Chem. Abst. (1981) 94:153498.Google Scholar
  15. Elmore, C.D. 1980. Free amino acids fromAbutilon theophrastii seed.Weed Res. 20:63–64.Google Scholar
  16. Evenari, M. 1949. Germination inhibitors.Bot. Rev. 15:153–194.Google Scholar
  17. Fottrell, P.F., O'Connor, S., andMasterson, C.L. 1964. Identification of the flavonol myricetin in legume seeds and its toxicity to nodule bacteria.Irish J. Agr. Res. 3:246–249.Google Scholar
  18. Fowden, L. 1974. Nonprotein amino acids from plants, distribution biosynthesis and analog functions. Rec. Adv. Phytochem. 8:95–122.Google Scholar
  19. Friedman, J. 1982. The response of developing seedlings of coffee (Coffea arabica L.) to caffeine and theophylline. 73rd Annual Meeting American Society of Biological Chemists, New Orleans, Louisiana, April 16–23,FASEB 41(3):680.Google Scholar
  20. Friedman, J., andElberse, W.Th. 1976. Competition between two desert varieties ofMedicago laciniata (L.) Mill, under controlled conditions.Oecologia 22:321–339.Google Scholar
  21. Friedman, J., Orsham, G., andZiger-Cfir, Y. 1977. Suppression of annuals byArtemisia herba-alba in the Negev desert of Israel.J. Ecol. 65:413–426.Google Scholar
  22. Friedman, J., andRushkin, E., 1980a. A slow efflux of 8-methoxypsoralen in the eluate of fruits ofAmmi majus inhibits germination ofAnastatica hierochuntica L. Fourth Asian Symposium of Medicinal Plants and Spices. ASMOS IV. Mahidol University, Bangkok, Thailand, Sept. 15–19, p. FA23.Google Scholar
  23. Friedman, J., andRushkin, E. 1980b. Inhibition of germination by 8-methoxypsoralen liberated from fruits of Bishop's Weed (Ammi majus L.) and its allelopathic significance. 60th Meeting Oklahoma Academy of Sciences, Norman, Oklahoma, Nov. 14, 1980.Google Scholar
  24. Friedman, J., Waller, G.R., andMitchell, E.D. 1981. Response of coffee embryos to exogenously applied caffeine. 72nd Annual Meeting American Soceity of Biological Chemists, St. Louis, Mo., May 31–June 4, FASEB 40(6):1811.Google Scholar
  25. Friedman, J., Rushkin, E., andWaller, G.R. 1982. Highly potent germination inhibitors in aqueous eluate of fruits of Bishop's Weed (Ammi majus L.) and avoidance of autoinhibition.J. Chem. Ecol. 8:55–65.Google Scholar
  26. Friedman, J., andWaller, G.R. 1983. Caffeine hazards and their prevention in germinating seeds of coffee (Coffea arabica L.)J. Chem. Ecol. 9:1099–1106.Google Scholar
  27. Fukushi, S. 1960. Components ofFicus carica IV. Influence of psoralene and bergapten on the germination of some vegetable seeds.Nippon Nogei Kagaku Kaishi 34:498–500;Chem. Abstr. (1963) 58:11903.Google Scholar
  28. Gressel, J.B., andHolm, L.B. 1964. Chemical inhibition of crop germination by weed seeds and the nature of inhibition byAbutilon theophrastii.Weed Res. 4:44–53.Google Scholar
  29. Harman, G.E., andGranett, A.L. 1972. Deterioration of stored pea seeds: changes in germination, membrane permeability and ultrastructure resulting from infection byAspergillus ruber and from ageing.Physiol. Plant Pathol. 2:271–278.Google Scholar
  30. Harper, J.L. 1977. Population Biology of Plants. Academic Press, London, 892 pp.Google Scholar
  31. Harper, J.L., andOgden, J. 1970. The reproductive strategy of higher plants. I. The concept of strategy with special reference toSenecio vulgaris L.J. Ecol. 58:681–698.Google Scholar
  32. Kato, T., Kobayashi, M., Sasaki, N., Yosia, K., andNonindo, T. 1978. The coumarin heraclenol as growth inhibitor in parsley seeds.Phytochemistry 17:158–159.Google Scholar
  33. Kato, T., Tsunakawa, M., Sasaki, M., Aizawa, H., Fukita, K., Kitahana, Y., andTakahashi, N. 1977. Growth and germination inhibitors in rice husks.Phytochemistry 16:45–48.Google Scholar
  34. Ketring, D.L. 1973. Germination inhibitors.Seed Sci. Technol. 1:305–324.Google Scholar
  35. Kudnyavtsev, G.R. 1979. Relation between the germination of sugar beets seeds and their apigenin glucoflavinoids.Dokl. Akad. Nauk. RSSR 23:849–851.Google Scholar
  36. Laibach, F., andKeil, I. 1937. Ueber die keimungshemmende Wirkung der freien Bläusaure.Ber. Deut. Bot. Ges. 55:579–583.Google Scholar
  37. Lerner, H.R., Mayer, A.M., andEvenari, M. 1959. The nature of the germination inhibitors present in dispersal units ofZygophyllum dumosum andTrigonella arabica.Physiol. Plant. 12:245–250.Google Scholar
  38. Lohaus, E., Blos, I., Schaefer, W., andRuediger, W. 1982. Natural inhibitors of germination and growth. II. Isolation and structure of inhibitors fromAvena sativa.Z. Naturforsch., C. Biosci. 37C(9), 802–811,C.A. 97:195887C.Google Scholar
  39. Mandava, N., Anderson, J.D., andSamson, R.D. 1974. Indole plant-growth inhibitor fromAbrus precatorius seeds.Phytochemistry 13:2853–2856.Google Scholar
  40. Muller, W.H. 1965. Volatile materials produced bySalvia leucophylla: Effect on seedling growth and soil bacteria.Bot. Gaz. 126:195–200.Google Scholar
  41. Muller, C.H. 1966. The role of chemical inhibition (allelopathy) in vegetational composition.Bull. Torrey Bot. Club 93:332–351.Google Scholar
  42. Nunn, P.B., Vega, A., andBell, E.A. 1967. Neurotoxic effects of α-amino-μ-methylamino-propoionic acid.Biochem. J. 106:15.Google Scholar
  43. Osborne, D. 1981. Senescence in seeds, pp. 13–38,in K.V. Thiman (ed.). Senescence in Plants. CRC Press Inc. City.Google Scholar
  44. Parish, D.J., andLeopold, A.C. 1978. On the mechanisms of ageing in soybean seeds.Plant Physiol. 61:365–368.Google Scholar
  45. Pijl, L. Van Der, 1972. Principles of Dispersal in Higher Plants. 2nd ed. Springer-Verlag, Berlin, 161 pp.Google Scholar
  46. Putnam, A.R., andDuke, W.B. 1978. Allelopathy in agroecosystems.Ann. Rev. Phytopathol. 16:431–451.Google Scholar
  47. Rice, E.L. 1974. Allelopathy. Academic Press, New York, p. 232.Google Scholar
  48. Rizvi, S.J.H., Mukerji, D., andMathur, S.N.J. 1980. A possible new source of a natural herbicide.J. Exp. Biol. 18:777–778.Google Scholar
  49. Roberts, E.H. 1972. Viability of Seeds. Chapman and Hall, London.Google Scholar
  50. Rusev, G., andAtanasova, D. 1981. Isolation of a plant antogenine with specific herbicide action.Int. Conf. Chem. Biotechnol. Biol. Act. Nat. Prod (Proc.) 1st 3:253–261.Google Scholar
  51. Shina-Roy, S.P., andChakraborty, D.P. 1976. Psoralen, a powerful germination inhibitor.Phytochemistry 15:2005–2006.Google Scholar
  52. Sondheimer, E., Tzou, D.S., andGalson, E.C. 1968. Abscisic acid levels and seed dormancy.Plant Physiol. 43:1443–1447.Google Scholar
  53. Valio, I.F.M. 1976. Germination of coffee seeds (Coffea arabica L. cv. Mundo Novo).J. Exp. Bot. 27:983–991.Google Scholar
  54. Waisel, Y., andAdler, Y. 1959. Germination behaviour ofAegilopskotschyi Boiss.Can. J. Bot. 37:741–742.Google Scholar
  55. Waller, G.R.,Friedman, J.,Chou, C.H.,Suzuki, T., andFriedman, N. 1982. Hazards, benefits, metabolism and translocation of caffeine inCoffea arabica plants and surrounding soils,in G.R. Waller and C.H. Chou (eds.). Allelochemicals and Pheromones. US-ROC (Taiwan) Seminar, Taipei, June 21–27, National Science Foundation (ROC) pp. 235–256.Google Scholar
  56. Went, F.M. 1950. The role of environment on seed growth.Proc. Annu. Meeting, North Central Weed Control Conf. 7:2–5.Google Scholar
  57. Williams, P.M., andAraias, I. 1978. Physio-ecological studies of plant species from the arid and semi-arid regions of Venezuela. I. The role of endogenous inhibitors in the germination of the seedsCerus griseus (Haw.) Br. & R. (Cactaceae).Acta Cient Venez. 29:93–97.Google Scholar
  58. Williams, P.M., Ross, J.D., andBradbeer, J.W. 1973. Studies in seed dormancy. VII. The abscisic acid content of seeds and fruits ofCorylus avellana L.Planta 110:303–310.Google Scholar
  59. Wilson, M.F., andBell, A.E. 1978a. Amino acids and β-aminopropionitrile as inhibitors of seed germination and growth.Photochemistry 17:403–406.Google Scholar
  60. Wilson, M.F., andBell, A.E. 1978b. The determination of the changes in free amino acid content of the eluate from germinating seeds ofBycine wightii (L.) and its effect on growth of lettuce fruits.J. Exp. Bot. 29:1243–1247.Google Scholar
  61. Wurzburger, J., andLeshem, Y. 1969. Physiological action of the germination inhibitor in the husk ofAegilops kotschyi. Boiss.New Phytol. 68:337–341.Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • Jacob Friedman
    • 1
    • 2
  • George R. Waller
    • 1
    • 2
  1. 1.Department of Botany George S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
  2. 2.Department of BiochemistryOklahoma State UniversityStillwater

Personalised recommendations