Advertisement

Journal of Chemical Ecology

, Volume 16, Issue 12, pp 3277–3290 | Cite as

Gut redox conditions in herbivorous lepidopteran larvae

  • Heidi M. Appel
  • Michael M. Martin
Article

Abstract

Large interspecific differences in redox potential exist among herbivorous lepidopteran larvae. Reducing conditions occur in the midguts ofManduca sexta (Sphingidae) andPolia latex (Noctuidae), whereas oxidizing conditions prevail in the midguts ofLymantria dispar (Lymantriidae),Danaus plexippus (Danaidae), andPapilio glaucus (Papilionidae). The epithelium of the posterior midgut ofM. sexta fed a diet containing bismuth subnitrate accumulates bismuth sulfide, suggesting that sulfide might be one of the reducing agents responsible for the maintenance of reducing conditions in this species. We propose that the effects of plant allelochemicals in insect herbivores will be strongly affected by gut redox conditions and that the regulation of gut redox conditions is an important adaptation of insect herbivores to the chemical defenses of plants. The redox state of the gut is yet another insect trait that must be included in the analysis of plant-insect interactions.

Key Words

Plant-insect interactions redox reduction potential digestion Lepidoptera Danaus plexippus Lymantria dispar Manduca sexta Papilio glaucus Polia latex Danaidae Lymantriidae Sphingidae Papilionidae Noctuidae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartlett, R.J. 1986. Soil redox behavior, pp. 179–207,in D.L. Sparks (ed.). Soil Physical Chemistry. CRC Press, Boca Raton, Florida.Google Scholar
  2. Bayon, C. 1980. Volatile fatty acids and methane production in relation to anaerobic carbohydrate fermentation inOryctes nasicornis larvae (Coleoptera: Scarabaeidae).J. Insect Physiol. 26:819–828.Google Scholar
  3. Bernays, E.A., Chamberlain, D., andMcCarthy, P. 1980. The differential effects of ingested tannic acid on different species of Acridoidea.Entomol. Exp. Appl. 28:158–166.Google Scholar
  4. Bignell, D.E. 1981. Nutrition and digestion, pp. 57–86,in W.J. Bell and K.G. Adiyodi (eds.). The American Cockroach. Chapman and Hall, London.Google Scholar
  5. Bignell, D.E. 1984. Direct potentiometric determination of redox potentials of the gut contents in the termitesZootermopsis nevadensis andCubitermes severus and in three other arthropods.J. Insect Physiol. 30:169–174.Google Scholar
  6. Bignell, D.E., andHeath, L.A.F. 1985. Electropositive redox state of the fifth-instar larval gut ofApis mellifera.J. Apic. Res. 24:211–213.Google Scholar
  7. Bodine, J.H. 1925. Physiology of the Orthoptera. Hydrogen ion concentration of the blood and alimentary tract of certain Orthoptera (grasshoppers).Biol. Bull. 48:79–82.Google Scholar
  8. Bohn, H.L., McNeal, B.L., andO'Connor, G.A. 1985. Soil Chemistry, 2nd ed. John Wiley & Sons, New York.Google Scholar
  9. Breznak, J.A. 1984. Biochemical aspects of symbiosis between termites and their intestinal symbionts, pp. 173–203,in J.M. Anderson, A.D.M. Rayner and D.W.H. Walton (eds.). Invertebrate-Microbial Interactions. Cambridge University Press, Cambridge, England.Google Scholar
  10. Day, M.F., andWaterhouse, D.F. 1953. The mechanism of digestion, pp. 311–330,in K.D. Roeder (ed.). Insect Physiology. John Wiley & Sons, New York.Google Scholar
  11. Felton, G.W., andDuffey, S.S. 1990. Inactivation of baculovirus by quinones formed in insectdamaged plant tissues.J. Chem. Ecol. 16:1221–1236.Google Scholar
  12. Felton, G.W., Donato, K., Del Vecchio, R.J., andDuffey, S.S. 1989. Activation of plant foliar oxidases by insect feeding reduces nutritive quality of foliage for noctuid herbivores.J. Chem. Ecol. 15:2667–2694.Google Scholar
  13. Hurrell, R.F., Finot, P.A., andCuq, J.L. 1982. Protein-polyphenol reactions. 1. Nutritional and metabolic consequences of the reaction between oxidized caffeic acid and the lysine residues of casein.Br. J. Nutr. 47:191–211.PubMedGoogle Scholar
  14. Keating, S.T., McCarthy, W.J., andYendol, W.G. 1989. Gypsy moth (Lymantria dispar) larval susceptibility to a baculovirus affected by selected nutrients, hydrogen ions (pH), and plant allelochemicals in artificial diets.J. Invert. Pathol. 54:165–174.Google Scholar
  15. Leatham, G.F., Kino, V., andStahmann, M.A. 1980. In vitro protein polymerization by quinones or free radicals generated by plant or fungal oxidative enzymes.Phytopathology 70:1134–1140.Google Scholar
  16. Lindsay, W.L. 1979. Chemical Equilibria in Soils. John Wiley & Sons, New York.Google Scholar
  17. Odell, T.M., andRollinson, W. 1966. A technique for rearing the gypsy moth on an artificial diet.J. Econ. Entomol. 59:741–742.Google Scholar
  18. Rowell, D.L. 1988. Flooded and poorly drained soils, pp. 899–926,in A. Wild (ed.). Russell's Soil Conditions and Plant Growth, 11th ed. Longman Scientific and Technical, Essex, England.Google Scholar
  19. Smith, M.T. 1985. Quinones as mutagens, carcinogens, and anticancer agents: Introduction and overview.J. Toxicol. Environ. Health 16:665–672.PubMedGoogle Scholar
  20. Srivastava, U.S., andSrivastava, P.D. 1956. On the hydrogen ion concentration in the alimentary canal of certain orthopteroid insects.Beitr. Entomol. 6:493–498.Google Scholar
  21. Steinly, B.A., andBerenbaum, M. 1985. Histopathological effects of tannins on the midgut epithelium ofPapilio polyxenes andPieris brassicae.Entomol. Exp. Appl. 39:3–9.Google Scholar
  22. Veivers, P.C., O'Brien, R.W., andSlaytor, M. 1980. The redox state of the gut of termites.J. Insect Physiol. 26:75–77.Google Scholar
  23. Waterhouse, D.F. 1952a, Studies on the digestion of wool by insects. IV. Absorption and elimination of metals by lepidopterous larvae, with special reference to the clothes moth,Tineola bisseiliella.Austr. J. Sci. Res. 5B:143–168.Google Scholar
  24. Waterhouse, D.F. 1952b. Studies on the digestion of wool by insects. VI. The pH and oxidationreduction potential of the alimentary canal of the clothes moth (Tineola bisselliella) (Humm.)Austr. J. Sci. Res. 5B:178–188.Google Scholar
  25. Waterhouse, D.F. 1952c. Studies on the digestion of wool by insects. VII. Some features of digestion in three species of dermistid larvae and a comparison withTineola larvae.Austr. J. Sci. Res. 5B:444–459.Google Scholar
  26. Waterhouse, D.F. 1953. Studies on the digestion of wool by insects. IX. Some features of digestion by chewing lice (Mallophaga) from bird and mammalian hosts.Austr. J. Sci. Res. 6B:257–275.Google Scholar
  27. Yoshimura, T., Tabata, H., Nishio, M., Ide, E., Yamaoko, R., andHayashiya, K., 1988.l-Cysteine lyase of the webbing clothes moth,Tineola bisselliella.Insect Biochem. 18:771–777.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Heidi M. Appel
    • 1
  • Michael M. Martin
    • 1
  1. 1.Department of BiologyUniversity of MichiganAnn Arbor

Personalised recommendations