Plant Systematics and Evolution

, Volume 126, Issue 2, pp 221–237 | Cite as

Molecular and cytological characteristics of nuclear DNA and chromatin for angiosperm systematics: Basic data forHelianthus annuus (Asteraceae)

  • W. Nagl
  • I. Capesius
Article

Abstract

As a contribution for the study of systematic and evolutionary relationships it is suggested to analyze nuclear DNA and chromatin by means of CsCl ultracentrifugation, thermal denaturation and renaturation, scanning densitometry, and (ultra)structural analyses. Relevant data have been obtained forHelianthus annuus as a first example.

The 2C DNA content of four cultivars ofHelianthus annuus L. was calibrated by comparative measurement withAllium cepa nuclei using a scanning densitometer in on-line operation with a computer. Significant infraspecific variation could be detected: cvar. “Amerikanische Riesen” displayed 6.1 pg, cvar. “Gefüllte Vielblütige” 9.9 pg, cvar. “Russian Mammoth” 8.9 pg, and a Heidelberg strain 8.7 pg.

The buoyant density in neutral CsCl was determined for cvar. “Amerikanische Riesen” to be 1.695 g · cm−3; this corresponds to an average GC content of 35.1%. Thermal denaturation revealed a melting temperature of 86.4°C. Derivative thermal denaturation profiles led to the detection of several distinct DNA fractions.

The species-specific nuclear structure is of the chromonematic type, but in differentiated cells the chromatin fibers may be more decondensed so that a chromomere-interchromomere structure appears. The heterochromatin constitutes an average of 4.5% of the total genome. Chromatin ultrastructure is characterized by a diffuse distribution of chromatin threads and patches. Nucleosomes of 110 Å diameter can be recognized.

The data are discussed (a) in relation to findings on DNA variation in other plants, (b) in relation to the systematic usefulness and further characterization of nuclear DNA and chromatin, and (c) in relation to tissue-specific and functional variation of the species-specific chromatin structure.

Key words

Asteraceae Helianthus DNA content infraspecific DNA variation DNA thermal denaturation profile buoyant density base composition chromatin structure heterochromatin content chromatin ultrastructure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baetcke, K. P., Sparrow, A. H., Nauman, C. H., andSchwemmer, S. S., 1967: The relationship of DNA content to nuclear and chromosome volumes and to radiosensitivity (LD50). Proc. Natl. Acad. Sci. U.S.A.58, 553–540.PubMedGoogle Scholar
  2. Bennett, M. D., 1972: Nuclear DNA content and minimum generation time in herbaceous plants. Proc. Roy. Soc. London, B,181, 109–135.Google Scholar
  3. —, 1973: Nuclear characters in plants. Brookhaven Symp. Biol.25, 344–366.Google Scholar
  4. Beridze, T., 1972: DNA nuclear satellites of the genusPhaseolus. Biochim. Biophys. Acta262, 393–396.PubMedGoogle Scholar
  5. —, 1975: DNA nuclear satellites of the genusBrassica: Variation between species. Biochim. Biophys. Acta295, 274–279.Google Scholar
  6. Britten, R. J., andDavidson, E. H., 1971: Repetitive and non-repetitive DNA sequences and a speculation on the origins of evolutionary novelty. Quart. Rev. Biol.46, 111–138.PubMedGoogle Scholar
  7. Capesius, I., andNagl, W., in preparation: Satellite DNA and heterochromatin in two orchids.Google Scholar
  8. —, andNagl, W., 1975: An A + T-rich satellite DNA in a monocotyledonous plant,Cymbidium. Biochim. Biophys. Acta395, 67–73.PubMedGoogle Scholar
  9. Chooi, W. Y., 1971: Variation in nuclear DNA content in the genusVicia. Genetics68, 195–211.Google Scholar
  10. Conger, A. D., andFairchild, L. M., 1953: A quick-freeze method for making smear slides permanent. Stain Technol.28, 281–283.PubMedGoogle Scholar
  11. Cullis, C. A., andSchweizer, D., 1974: Repetitious DNA in someAnemone species. Chromosoma44, 417–421.Google Scholar
  12. Davidson, E. H., Galau, G. A., Angerer, R. C., andBritten, R. J., 1975: Comparative aspects of DNA organization in metazoa. Chromosoma51, 253–259.PubMedGoogle Scholar
  13. Dhir, N. K., andMiksche, J. P., 1974: Intraspecific variation of nuclear DNA content inPinus resinosa Ait. Can. J. Genet. Cytol.16, 77–83.Google Scholar
  14. Flamm, W. G., 1972: Highly repetitive sequences of DNA in chromosomes. Intern. Rev. Cytol.32, 1–51.Google Scholar
  15. Flavell, R. B., andSmith, D. B., in press: Nucleotide sequence organization in the wheat genome. Cell.Google Scholar
  16. —, andSmith, D. B., 1974: Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochem. Genet.12, 257–279.PubMedGoogle Scholar
  17. Furuta, Y., Haji, T., andNishikawa, K., 1975a: Nuclear DNA content of Einkorn wheat. Wheat Inform. Serv.40, 15–16.Google Scholar
  18. —, andMakino, K., 1975b: Intraspecific variation of nuclear DNA content inAegilops squarrosa L. Japan. J. Genet.50, 257–263.Google Scholar
  19. Green, B. R., 1971: Isolation and base composition of DNAs of primitive land plants. I. Ferns and fern-allies. Biochim. Biophys. Acta244, 402–406.Google Scholar
  20. Greilhuber, J., 1975: Heterogeneity of heterochromatin in plants: Comparison of Hy- and C-bands inVicia faba. Plant Syst. Evol.124, 139–156.Google Scholar
  21. Hsu, T. C., 1975: A possible function of constitutive heterochromatin: The bodyguard hypothesis. Genetics79, Suppl. II, 137–150.PubMedGoogle Scholar
  22. Ingle, J., andSinclair, J., 1972: Ribosomal RNA genes and plant development. Nature235, 30–32.PubMedGoogle Scholar
  23. Ingle, J., Pearson, G. G., andSinclair, J., 1973: Species distribution and properties of nuclear satellite DNA in higher plants. Nature New Biol.242, 193–197.PubMedGoogle Scholar
  24. —, andSinclair, J., 1975: The relationship between satellite DNA, ribosomal RNA gene redundancy and genome size. Plant Physiol.55, 496–501.Google Scholar
  25. Lafontaine, J.-G., 1974: Ultrastructural organization of plant cell nuclei. In:Busch, H. (Ed.): The Cell Nucleus I, 149–185. New York-London: Academic Press.Google Scholar
  26. Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall, R. J., 1951: Protein measurements with the foline phenol reagent. J. Biol. Chem.193, 265–275.PubMedGoogle Scholar
  27. Marmur, J., 1961: A procedure for the isolation of DNA from microorganisms. J. Mol. Biol.3, 208–218.Google Scholar
  28. —, andDoty, P., 1962: Determination of the base composition of DNA from its thermal denaturation temperature. J. Mol. Biol.5, 109–118.PubMedGoogle Scholar
  29. Miksche, J. P., 1968: Quantitative study of intraspecific variation of DNA per cell inPicea glauca andPinus banksiana. Can. J. Genet. Cytol.10, 590–600.Google Scholar
  30. —, 1971: Intraspecific variation of DNA per cell betweenPicea sitchensis (Bong.)Carr. provenances. Chromosoma32, 343–352.PubMedGoogle Scholar
  31. —, andHotta, Y., 1973: DNA base composition and repetitious DNA in several conifers. Chromosoma41, 29–36.Google Scholar
  32. Müller, D., 1966: Erfahrungen mit der Feulgenfärbung für quantitative cytochemische DNS-Untersuchungen. Histochemie7, 96–102.PubMedGoogle Scholar
  33. Nagl, W., 1974: Role of heterochromatin in the control of cell cycle duration. Nature249, 53–54.Google Scholar
  34. —, 1976: Nuclear organization. Ann. Rev. Plant Physiol.27, 39–69.Google Scholar
  35. - in press: Zellkern und Zellzyklen. Stuttgart: Ulmer.Google Scholar
  36. - in preparation: Infidelity of nuclear area in estimation of endopolyploidy levels.Google Scholar
  37. —, andCapesius, I., 1976: Endopolyploidy inHelianthus annuus. A scanning cytophotometric study. Plant Syst. Evol.125: 261–268.Google Scholar
  38. —, andEhrendorfer, F., 1974: DNA content, heterochromatin, mitotic index, and growth in perennial and annualAnthemideae (Asteraceae). Plant Syst. Evol.123, 35–54.Google Scholar
  39. Olins, A. L., andOlins, D. E., 1974: Spheroid chromatin units (v-bodies). Science183, 330–332.PubMedGoogle Scholar
  40. Oudet, P., Gross-Bellard, M., andChambon, P., 1975: Electron microscopic and biochemical evidence that chromatin structure is a repeating unit. Cell4, 281–300.PubMedGoogle Scholar
  41. Pivec, L., Horska, K., Vitek, A., andDoskocil, J., 1974: Plurimodal distribution of base composition in DNA of some higher plants. Biochim. Biophys. Acta340, 199–206.PubMedGoogle Scholar
  42. Rees, H., andJones, R. N., 1972: The origin of the wide species variation in nuclear DNA content. Intern. Rev. Cytol.32, 53–92.Google Scholar
  43. Schildkraut, C. L., Marmur, J., andDoty, P., 1962: Determination of the base composition of DNA from its buoyant density in CsCl. J. Mol. Biol.4, 430–443.PubMedGoogle Scholar
  44. Schweizer, D., andEhrendorfer, F., 1976: Giemsa banded karyotypes, systematics, and evolution inAnacyclus (Asteraceae-Anthemideae). Plant Syst. Evol.126, 107–148.Google Scholar
  45. Schweizer, D., andNagl, W., 1976: Heterochromatin diversity inCymbidium-and its relationship to differential DNA replication. Exp. Cell Res.98, 411–423.PubMedGoogle Scholar
  46. Scott, N. S., andIngle, J., 1973: The genes for cytoplasmic rRNA in higher plants. Plant Physiol.51, 677–684.Google Scholar
  47. Severs, N. J., andJordan, E. G., 1975: Nuclear envelope changes related to cell activation inHelianthus tuberosus L. Experientia31, 1276–1278.Google Scholar
  48. Speta, F., 1972: Entwicklungsgeschichte und Karyologie von Elaiosomen an Samen und Früchten. Naturk. Jahrb. Linz1972, 9–65.Google Scholar
  49. Spurr, A. R., 1969: A low viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res.26, 31–43.PubMedGoogle Scholar
  50. Tanaka, R., 1971: Types of resting nuclei inOrchidaceae. Bot. Mag. Tokyo84, 118–122.Google Scholar
  51. Timmis, J. N., Deumling, B., andIngle, J., 1975: Localization of satellite DNA sequences in nuclei and chromosomes of two plants. Nature257, 152–155.PubMedGoogle Scholar
  52. Tschermak-Woess, E., 1963: Strukturtypen der Ruhekerne von Pflanzen und Tieren. Protoplasmatologia VI/1. Wien-New York: Springer.Google Scholar
  53. Van't Hof, J., 1965: Relationship between mitotic cycle duration, S period duration and the average rate of DNA synthesis in root meristems of several plants. Exp. Cell Res.39, 48–58.PubMedGoogle Scholar
  54. Walbot, V., 1975: Organization of the genome of cotton. Plant Physiol. Suppl.56, 25.Google Scholar
  55. Wohlfarth-Bottermann, K. E., 1957: Die Kontrastierung tierischer Zellen und Gewebe im Rahmen ihrer elektronenmikroskopischen Untersuchung an ultradünnen Schnitten. Naturwiss.44, 287–288.Google Scholar
  56. Yunis, J. J., andYasmineh, W. G., 1971: Heterochromatin, satellite DNA, and cell function. Science174, 1200–1209.PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • W. Nagl
    • 1
  • I. Capesius
    • 2
  1. 1.Dept. of BiologyThe UniversityKaiserslauternGermany
  2. 2.Institute of BotanyThe UniversityHeidelbergGermany

Personalised recommendations