Advertisement

Journal of Chemical Ecology

, Volume 18, Issue 7, pp 1177–1188 | Cite as

Species-specific, two-component, volatile signals in two sympatric ant-lion species:Synclysis baetica andAcanthaclisis occitanica (Neuroptera, Myrmeleontidae)

  • G. Bergström
  • A. -B. Wassgren
  • H. -E. Högberg
  • E. Hedenström
  • A. Hefetz
  • D. Simon
  • T. Ohlsson
  • J. Löfqvist
Article

Abstract

The thoracic glands of males in two ant-lion speciesSynclysis baetica andAcanthaclisis occitanica, which occur sympatrically in Israel, were found to contain a volatile secretion with two-component blends of nerol oxide and (R,Z)-6-tridecen-2-ol (approx 1∶5) and nerol oxide and 10-homonerol oxide (approx. 1∶2), respectively. Chemical analyses were performed using gas chromatography-mass spectrometry, chiral gas chromatography, and ozonolysis, and the proposed structures were confirmed by synthesis. The species-specific, few-component volatile signals are thought to function as a reproductive isolation mechanism between the two sympatric species. Biochemical relationships between the nerol derivatives and between the unsaturated secondary alcohols are discussed.

Key Words

Ant lions Neuroptera Myrmeleontidae (R,Z)-6-tridecen-2-ol nerol oxide 10-homonerol oxide biosynthesis enantiomers gas chromatography-mass spectrometry sympatric species isolation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ansell, M.F., Emmet, J.C., andCoombs, R.V. 1968. The intramolecular acylation of some hexhept and octenoic acids.J. Chem. Soc. C:217–225.Google Scholar
  2. Baeckström, P., Bergström, G., Björkung, F., Hui-Zhu, H., Högberg, H.-E., Jacobsson, U., Guo-Qiang, L., Löfqvist, J., Norin, T., andWassgren, A.-B. 1989. Structures, absolute configurations, and syntheses of volatile signals from three sympatric ant-lion species,Euroleon nostras, Grocus bore, Myrmeleon formicarius (Neuroptera: Myrmeleontidae).J. Chem. Ecol. 10:61–80.Google Scholar
  3. Beilstein, 1973. Handbuch der Organische Chemie. Band 1, Erg. Werk 4, p. 1566; Erg. Werk 3, p. 1663; Erg. Werk 4; p. 1770.Google Scholar
  4. Beroza, M., andBierl, B.A. 1967, Rapid determination of olefin position in organic compounds in the microgram range by ozonolysis and gas chromatography.Anal. Chem. 39:1131–1135.Google Scholar
  5. Boland, W., andGäbler, A. 1989. Biosynthesis of homoterpenes in higher plants.Helv. Chim. Acta. 72:247–253.Google Scholar
  6. Elofson, R., andLöfqvist, J. 1974. The Eltringham organ and a new thoracic gland: Ultrastructure and presumed pheromone function (Insects, Myrmeleontidae).Zool. Scripta 3:31–40.Google Scholar
  7. Gäbler A., Boland, W., Preiss, U., andSimon, H. 1991. Stereochemical studies on homoterpene biosynthesis in higher plants; Mechanistic, phylogenetic, and ecological aspects.Helv. Chim. Acta. 74:1773–1789.Google Scholar
  8. Gerlach, D., Schneider, S., Göller, T., Kim, K.S., andSchreier, P. 1987. Screening of lipases for enantiomers resolution of secondary alcohols by esterification in organic medium, pp. 543–554,in S. Schneider (ed.). Bioflavour '87. Walter de Gruyter, Berlin.Google Scholar
  9. Högberg, H.-E., Hedenström, E., Isaksson, R., andWassgren, A.-B. 1987. Preparation of the four stereoisomers of chalcogran, pheromone components ofPityogenes chalcographus and of both enantiomers of γ-caprolactone, pheromone component ofTragoderma granarium.Acta Chem. Scand. B 41:694–697.Google Scholar
  10. König, W.A., Francke, W., andBenecke, I., 1982. Gas Chromatographic enantiomer separation of chiral alcohols.J. Chromatogr. 239:227–231.Google Scholar
  11. Löfqvist, J., andBergström, G. 1980. Nerol-derived volatile signals as a biochemical basis for reproductive isolation between sympatric population of three species of ant-lions (Neuroptera: Myrmeleontidae).Insect Biochem. 10:1–10.Google Scholar
  12. Pirkle, W.H., andAdams, P.E. 1979. Broad-spectrum synthesis of enantiomerically pure lactones 1. Synthesis of sex pheromones of the carpenter bee, rove beetle, Japanese beetle, black-tailed deer and oriental hornet.J. Org. Chem. 44:2169–2175.Google Scholar
  13. Schurig, V., andWeber, R. 1981. Manganese(II)-bis[3-heptafluorobutyryl-l(R)-camphorate]: A versatile agent for the resolution of racemic cyclic ethers by complexation gas chromatography.J. Chromatogr. 217:51–70.Google Scholar
  14. Simon, D. 1988. Ant-Lions (Neuroptera: Myrmeleontidae) of the Coastal Plain: Systematical, Ecological and Zoogeographical Aspects with Emphasis on the Coexistence of a Species Guild of the Unstable Dunes, p. 213,in Ph.D. thesis. Tel Aviv University, Tel Aviv (in Hebrew).Google Scholar
  15. Stange, L.A., andMiller, R.B. 1985. A generic review of the Acanthaclisine ant-lions based on larvae (Neuroptera: Myrmeleontidae).Inseda Mundi 1:29–42.Google Scholar
  16. Wassgren, A.-B., andBergström, G. 1984. Revolving fraction collector for preparative capillary gas chromatography in the 100-μg to 1-ng range.J. Chem. Ecol. 10:1543–1550.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • G. Bergström
    • 1
  • A. -B. Wassgren
    • 1
  • H. -E. Högberg
    • 2
  • E. Hedenström
    • 2
  • A. Hefetz
    • 3
  • D. Simon
    • 3
  • T. Ohlsson
    • 4
  • J. Löfqvist
    • 5
  1. 1.Department of Chemical EcologyUniversity of GöteborgGöteborgSweden
  2. 2.University College of Sundsvall/HärnösandSundsvallSweden
  3. 3.Department of ZoologyTel Aviv UniversityRamat AvivIsrael
  4. 4.Department of Organic ChemistryChalmers University of TechnologyGöteborgSweden
  5. 5.Department of EcologyAnimal Ecology Lund UniversityLundSweden

Personalised recommendations