Journal of Chemical Ecology

, Volume 18, Issue 7, pp 931–944 | Cite as

6-Methoxy-2-benzoxazolinone: A semiochemical for host location by western corn rootworm larvae

  • Louis B. Bjostad
  • Bruce E. Hibbard


A bioassay-driven sequential fractionation scheme was used to isolate all portions of a crude dichloromethane corn seedling extract behaviorally active to larvae of the western corn rootworm,Diabrotica virgifera virgifera LeConte. 6-Methoxy-2-benzoxazolinone (MBOA) was identified as one of the most important components of an attractive crude corn extract. MBOA was found on or in the intact root tissues by injecting an extract of undamaged roots onto an HPLC immediately after extraction. MBOA was demonstrated to be volatile and functions as a semiochemical in conjunction with carbon dioxide in host location by western corn rootworm larvae, which are oligophagous on the roots of maize and several other species of grasses. Because MBOA occurs almost exclusively in maize and other grasses, it offers a simple way for the larvae to distinguish possible hosts from non-hosts. MBOA has previously been reported as a chemical defense against other insect species. This is the first report in grasses of a secondary compound that is toxic or a deterrent to nonadapted insect herbivores but that is used as a semiochemical in host location by a specialist insect species.

Key Words

Diabrotica virgifera virgifera 6-methoxy-2-benzoxazolinone hydroxamic acids semiochemical attractants western corn rootworm host location Coleoptera Chrysomelidae Zea mays kairomone 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abou-Fakhr, E.M.,Hibbard, B.E., andBjostad, L.B. 1992. Tolerance of western corn rootworm (Coleoptera: Chrysomelidae) larvae to 6-methoxy-2-benzoxazolinone (MBOA), a larval semiochemical. North Central Branch,Entomol. Soc. Am., Abstracts of presentations.Google Scholar
  2. Argandoña, V.H., Luza, J.G., Niemeyer, H.M., andCorcuera, L.J. 1980. Role of hydroxamic acids in the resistance of cereal aphids.Phytochemistry 19:1665–1668.Google Scholar
  3. Argandona, V.H., Corcuera, L.J., Niemeyer, H.M., andCampbell, B.C. 1983. Toxicity and feeding deterrency of hydroxamic acids from Gramineae in synthetic diets against the greenbug,Schizaphis graminum.Entomol. Exp. Appl. 34:134–138.Google Scholar
  4. Beck, S.D., andSmissman, E.E. 1961. The European corn borer, Pyrausta nubilalis, and its principal host plant. IX. Biological activity of chemical analogs of corn resistance factor A (6-methoxybenzoxazolinone).Ann. Entomol. Soc. Am. 54:53–61.Google Scholar
  5. Beck, S.D., andStauffer, J.F. 1957. The European corn borerPyrausta nubilalis (Hubn.), and its principal host plant III toxic factors influencing larval establishment.Ann. Entomol. Soc. Am. 50:166–170.Google Scholar
  6. Beck, D.L., Dunn, G.M., Routley, D.G., andBowman, J.S. 1983. Biochemical basis of resistance in corn to the corn leaf aphid.Crop Sci. 23:995–998.Google Scholar
  7. Bohidar, K., Wratten, S.D., andNiemeyer, H.M. 1986. Effects of hydroxamic acids on the resistance of wheat to the aphidSitobion avenae.Ann. Appl. Biol. 109:193–198.Google Scholar
  8. Branson, T.F. 1982. Olfactory response of larvae ofDiabrotica virgifera virgifera to plant roots.Entomol. Exp. Appl. 31:303–307.Google Scholar
  9. Branson, T.F., andOrtman, E.E. 1967. Host range of larvae of the western corn rootworm.J. Econ. Entomol. 60:201–203.Google Scholar
  10. Branson, T.F., andOrtman, E.E. 1970. The host range of larvae of the western corn rootworm: Further studies.J. Econ. Entomol. 63:800–803.Google Scholar
  11. Branson, T.F., Guss, P.L., andOrtman, E.E. 1969. Toxicity of sorghum roots to larvae of the western corn rootworm.J. Econ. Entomol. 62:1375–1378.Google Scholar
  12. Branson, T.F., Sutter, G.R., andFisher, J.R. 1980. Plant response to stress induced by artificial infestation of western corn rootworm.Environ. Entomol. 9:253–257.Google Scholar
  13. Campos, F., Atkinson, J., Arnason, J.T., Philogène, B.J.R., Morand, P., Werstiuk, N.H., andTimmins, G. 1988. Toxicity and toxicokinetics of 6-methoxybenzoxazolinone (MBOA) in the European corn borer,Ostrinia nubilalis (Hubner).J. Chem. Ecol. 14:989–1002.Google Scholar
  14. Campos, F., Atkinson, J., Arnason, J.T., Philogène, B.J.R., Morand, P., Werstiuk, N.H., andTimmlns, G. 1989. Toxicokinetics of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) in the European corn borer,Ostrinia nubilalis (Hubner).J. Chem. Ecol. 15:1989–2001.Google Scholar
  15. Chen, C., andChen, M. 1976. 6-Methoxybenzoxazolinone and triterpenoids from rootsof Scoparia dulcis.Phytochemistry 15:1997–1999.Google Scholar
  16. Corcuera, L.J., Woodward, J.D., Helgeson, J.P., Kelman, A., andUpper, C.D. 1978. 2,4-Dihydroxy-7-methoxy-2H-1,4-benzoxazin3(4H)-one, and inhibitor fromZea mays with differential activity against soft rottingErwinia species.Plant Physiol. 61:791–795.Google Scholar
  17. Corcuera, L.J., Queirolo, C.B., andArgandona, V.H. 1985. Effects of 2-β-D-glucosyl-4-hydroxy-7-methoxy-1,4-benzoxazin-3-one onSchizaphis graminum (Rondani) (Insecta, Aphididae) feeding on artificial diets.Experientia 41:514–516.Google Scholar
  18. Doane, J.F., Lee, Y.W., Klinger, J., andWestcott, N.D. 1975. The orientation response ofCtenicera destructor and other wireworms (Coleoptera: Elateridae) to germinating grain and to carbon dioxide.Can. Entomol. 107:1233–1252.Google Scholar
  19. Dowd, P.P. 1990. Responses ofCarpophilus hemipterus larvae and adults to selected secondary metabolites of maize.Entomol. Exp. Appl. 54:29–36.Google Scholar
  20. Duncan, D.B. 1955. Multiple range and multipleF tests.Biometrics 11:1–42.Google Scholar
  21. Guthrie, W.D., Barry, B.D., Rossman, B.C., andJarvis, J.L. 1985. Correlation between leaf-feeding resistance to European corn borer (Lepidoptera: Pyralidae) and resistance to northern corn leaf blight.J. Econ. Entomol. 78:811–814.Google Scholar
  22. Gutierrez, C., Castañera, P., andTorres, V. 1988. Wound-induced changes in DIMBOA (2,4-dihyroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one) concentration in maize plants caused bySesamia nonagrioides (Lepidoptera: Noctuidae).Ann. App. Biol. 113:447–454.Google Scholar
  23. Hanway, J.J. 1966. How a corn plant develops. Iowa State University of Science and Technology Cooperative Extension Service, Special Report No. 48.Google Scholar
  24. Harborne, J.B. 1988. Introduction to Ecological Biochemistry. Academic Press, New York.Google Scholar
  25. Heath, R.R., andTumlinson, J.H. 1986. Correlation of retention times on liquid crystal capillary column with reported vapor pressures and half-lives of compounds used in pheromone formulations.J. Chem. Ecol. 12:2081–2088.Google Scholar
  26. Hibbard, B.E., andBjostad, L.B. 1988. Behavioral responses of western corn rootworm larvae to volatile semiochemicals from corn seedlings.J. Chem. Ecol. 14:1523–1539.Google Scholar
  27. Hibbard, B.E., andBjostad, L.B. 1989. Corn semiochemicals and their effects on insecticide efficacy and insecticide repellency toward western corn rootworm larvae (Coleoptera: Chrysomelidae).J. Econ. Entomol. 82:773–781.Google Scholar
  28. Hibbard, B.E., andBjostad, L.B. 1990. Isolation of corn semiochemicals attractive and repellent to western corn rootworm larvae.J. Chem. Ecol. 16:3425–3440.Google Scholar
  29. Hofman, J., andHofmanová, O. 1971. 1,4-Benzoxazine derivatives in plants: Absence of 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3/4H/-one from uninjuredZea mays plants.Phytochemistry 10:1441–1444.Google Scholar
  30. Jackson, J.J. 1986. Rearing and handling ofDiabrotica virgifera andDiabrotica undecimpunctata howardi, pp. 25–47,in J.L. Krysan and T.A. Miller (eds.). Methods for the Study of PestDiabrotica. Springer-Verlag, New York.Google Scholar
  31. Jones, O.T., andCoaker, T.H. 1977. Oriented responses of carrot fly larvaePsila rosae, to plant odours, carbon dioxide and carrot root volatiles.Physiol. Entomol. 2:189–197.Google Scholar
  32. Klun, J.A., andBrindley, T.A. 1966. Role of 6-methoxybenzoxazolinone in inbred resistance of host plant (maize) to first-brood larvae of European corn borer.J. Econ. Entomol. 59:711–718.Google Scholar
  33. Klun, J.A., Tipton, C.L., andBrindley, T.A. 1967. 2,4-Dihydroxy-7-methoxy-1,4-benzoxa-zin-3-one (DIMBOA), an active agent in the resistance of maize to the European corn borer.J. Econ. Entomol. 60:1529–1533.Google Scholar
  34. Krysan, J.L., andMiller, T.A. 1986. Methods for the Study of PestDiabrotica. Springer-Verlag, New York.Google Scholar
  35. Kubo, I., andKamikawa, T. 1983. Identification and efficient synthesis of 6-methoxy-2-benzox-azolmone (MBOA), in insect antifeedant.Experientia 39:355.Google Scholar
  36. Long, B.D., Dunn, G.M., andRoutley, D.G. 1975. Relationship of hydroxamic acid content in maize and resistance to northern corn leaf blight.Crop Sci. 15:333–335.Google Scholar
  37. Lyons, P.C., Hipskind, J.D., Wood, K.V., andNicholson, R.L. 1988. Separation and quantification of cyclic hydroxamic acids and related compounds by high-pressure liquid chromatography.J. Agr. Food Chem. 36:57–60.Google Scholar
  38. Massimino, D., Andre, M., Richaud, C., Daguenet, A., Massimino, J., andVivoli, J. 1980. Évolution horaire au cours d'une journée normale de la photosynthèse, de la transpiration, de la respiration foliare et racinair et de la nutrition. N.P.K. chezZea mays. Physiol. Plant 48:512–518.Google Scholar
  39. Metcalf, R.L. 1986. Foreword, pp. vii-xv,in J.L. Krysan and T.A. Miller (eds.). Methods for the Study of PestDiabrotica. Springer-Verlag, New York.Google Scholar
  40. Nicollier, G.F., Hedin, P.A., andDavis, P.M. 1982. 5−, 6−, and 7-methoxybenzoxazolinone: Carbon-13 nuclear magnetic resonance spectra and biological activity.J. Agr. Food Chem. 30:1133–1135.Google Scholar
  41. Niemeyer, H.M. 1988. Hydroxamic acids (4-hydroxy-1,4-benzoxazin-3-ones), defence chemicals in the Gramineae.Phytochemistry 27:3349–3358.Google Scholar
  42. Pline, M., andDusenbery, D.B. 1987. Responses of plant-parasitic nematodeMeloidogyne incognita to carbon dioxide determined by videocamera-computer tracking.J. Chem. Ecol. 13:873–888.Google Scholar
  43. Reed, G.L., Brindley, T.A., andShowers, W.B. 1972. Influence of resistant corn leaf tissue on the biology of the European corn borer.Ann. Entomol. Soc. Am. 65:658–662.Google Scholar
  44. Robinson, J.F., Klun, J.A., Guthrie, W.D., andBrindley, T.A. 1982. European corn borer (Lepidoptera: Pyralidae) leaf feeding resistance: DIMBOA bioassays.J. Kans. Entomol. Soc. 55:357–364.Google Scholar
  45. Rosenthal, G.A., andJanzen, D.H. 1982. Herbivores: Their Interaction with Secondary Plant Metabolites. Academic Press, New York.Google Scholar
  46. Sas Institute. 1990. SAS User's Guide, 1990 ed. SAS Institute Inc., Cary, NC.Google Scholar
  47. Silverstein, R.M., Rodin, J.O., andWood, D.L. 1967. Methodology for isolation and identification of insect pheromones with reference to studies on California five-spined ips.J. Econ. Entomol. 60:944–949.Google Scholar
  48. Strnad, S.P., andBergman, M.K. 1987. Movement of first-instar western corn rootworms (Coleoptera: Chrysomelidae) in soil.Environ. Entomol. 16:975–978.Google Scholar
  49. Strnad, S.P., andDunn, P.E. 1990. Host search behaviour of neonate western corn rootworm (Diabrotica virgifera virgifera).J. Insect Physiol. 36:201–205.Google Scholar
  50. Strnad, S.P., Bergman, M.K., andFulton, W.C. 1986. First-instar western corn rootworm (Coleoptera: Chrysomelidae) response to carbon dioxide.Environ. Entomol. 15:839–842.Google Scholar
  51. Wahlroos, Ö., andVirtanen, A.I. 1958. On the antifungal effect of benzoxazolinone and 6-methoxybenzoxazolinone, respectively onFusarium nivale.Acta Chem. Scand. 12:124–128.Google Scholar
  52. Wahlroos, Ö., andVirtanen, A.I. 1959. The precursors of 6-methoxy-benzoxazolinone in maize and wheat plants, their isolation and some of their properties.Acta Chem. Scand. 13:1906–1908.Google Scholar
  53. Waller, G.R. 1987. Allelochemicals: Role in Agriculture and Forestry. ACS Symposium Series No. 330, American Chemical Society, Washington, DC.Google Scholar
  54. Weast, R.C., andAstle, M.I. 1981. CRC Handbook of Chemistry and Physics. CRC Press, Boca Raton, FL.Google Scholar
  55. Willard, J.I., andPenner, D. 1976. Benzoxazinones: Cyclic hydroxamic acids found in plants.Residue Rev. 64:67–76.Google Scholar
  56. Woodward, M.D., Corcuera, L.J., Helgenson, J.P., andUpper, C.D. 1978a. Decomposition of 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one in aqueous solutions.Plant Physiol. 61:796–802.Google Scholar
  57. Woodward, M.D., Corcuera, L.J., Helgenson, J.P., Kelman, A., andUpper, C.D. 1978b. Factors that influence the activity of 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one onErwinia species in growth assays.Plant Physiol. 61:803–805.Google Scholar
  58. Xie, Y.S., Arnason, J.T., Philogène, B.J.R., andLambert, J.D.H. 1990. Role of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) in the resistance of maize to western corn root-worm,Diabrotica virgifera virgifera (LeConte) (Coleoptera: Chrysomelidae).Can. Entomol. 122:1177–1186.Google Scholar
  59. Xie, Y.S., Atkinson, J., Arnason, J.T., Morand, P., andPhilogène, B.J.R. 1991a. Separation and quantification of 1,4-benzoxazin-3-ones and benzoxazolin-2-ones in maize root extract by high-performance liquid chromatography.J. Chromatogr. 543:389–395.Google Scholar
  60. Xie, Y.S., Arnason, J.T., Philogène, B.J.R. Atkinson, J., andMorand, P. 1991b. Distribution and variation of hydroxamic acids and related compounds in maize (Zea mays) root system.Can. J. Bot. 69:677–681.Google Scholar
  61. Zúñiga, G.E., andMassardo, F. 1991. Hydroxamic acid content in undifferentiated and differentiated tissues of wheat.Phytochemistry 30:3281–3283.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Louis B. Bjostad
    • 1
  • Bruce E. Hibbard
    • 1
  1. 1.Department of EntomologyColorado State UniversityFort Collins

Personalised recommendations