An iterative algorithm for the cyclic Towers of Hanoi problem

  • M. C. Er


In the cyclic Towers of Hanoi problem, the discs may only move in a clockwise direction from a source peg to a specified peg subject to the usual restrictions of the standard problem. An iterative solution to the modified problem is presented. A number of observations that lead to the construction of an iterative algorithm is also discussed.

Key words

Towers of Hanoi iteration recursion algorithm design 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. W. Dijkstra,A short introduction to the art of programming, EWD 316 (1971).Google Scholar
  2. 2.
    P. J. Hayes, A note on the Towers of Hanoi problem,Computer Journal 20:282–285 (1977).Google Scholar
  3. 3.
    P. Buneman and L. Levy, The Towers of Hanoi problem.Information Processing Letters 10:243–244 (1980).Google Scholar
  4. 4.
    M. C. Er, A representation approach to the Tower of Hanoi problem,Computer Journal 25:442–447 (1982).Google Scholar
  5. 5.
    M. D. Atkinson, The cyclic Towers of Hanoi,Information Processing Letters 13:118–119 (1981).Google Scholar
  6. 6.
    J. S. Rohl, Why recursion?, Proceedings of the Symposium on Language Design and Programming Methodology, J. M. Tobias (ed.), pp. 71–83 (Springer-Verlag New York 1979).Google Scholar
  7. 7.
    J. S. Rohl, Converting a class of recursive procedures into non-recursive ones,Software-Practice and Experience 7:231–238 (1977).Google Scholar
  8. 8.
    J. S. Rohl, Eliminating recursion from combinatoric procedures,Software-Practice and Experience 11:803–817 (1981).Google Scholar
  9. 9.
    T. R. Walsh, Iteration strikes back—at the cyclic Towers of Hanoi,Information Processing Letters 16:91–93 (1983).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • M. C. Er
    • 1
  1. 1.Department of Computing ScienceUniversity of WollongongWollongongAustralia

Personalised recommendations