Neurochemical Research

, Volume 18, Issue 11, pp 1183–1191 | Cite as

Distribution of indoleamines and [3H]paroxetine binding in rat brain regions following acute or perinatal Δ9-tetrahydrocannabinol treatments

  • Francisco Molina-Holgado
  • Eduardo Molina-Holgado
  • María L. Leret
  • María I. González
  • Tomás A. Reader
Original Articles

Abstract

The effects of Δ9-tetrahydrocannabinol (Δ9-tetrahydrocannabinol-THC) administration on the central serotoninergic system were evaluated by biochemical assays of tissue levels of indoleamines; a measure of the serotonin (5-HT) innervation was obtained by using [3H]paroxetine as a maker of 5-HT uptake sites. Two different Δ9-THC treatments were chosen, i.e: acute and chronic perinatal maternal exposure. Following acute treatment (5mg/kg), the 5-HT content increased in dorsal hippocampus (+35%), Substantia nigra (+61%) and neostriatum (+62%) but remained unchanged in cingulate cortex, Raphe nuclei, Locus coeruleus and anterior hypothalamus. Endogenous 5-hydroxyindole-3-acetic acid (5-HIAA) decreased in anterior hypothalamus (−23%) and Raphe nuclei (−21%). Following maternal exposure to Δ9-THC (5 mg/kg per day; from gestational day 13 to postnatal day 7), levels of 5-HT were increased in the neostriatum (+22%) but decreased in anterior hypothalamus (−25%), Raphe nuclei (−29%) and Locus coeruleus (−20%) of the litters. Tissue 5-HIAA was increased in anterior hypothalamus (+23%) and Substantia nigra (+48%). There were no changes in 5-HT uptake site density, determined by [3H]paroxetine binding, except for an increase (+50%) in the cingulate cortex of perinatal-treated rats when compared to acutely-treated animals. The present results show that acute and maternal exposure to Δ9-THC produced different effects on the central 5-HT system of the offspring, with a clear regional especifity, but with no changes in the densities of 5-HT uptake sites.

Key Words

Cannabis serotonin uptake sites 5-HIAA HPLC 

Abbreviations

Hypo

anterior hypothalamus

Cin

cingulate cortex

dHipp

dorsal hippocampus

5-HIAA

5-hydroxyindole-3-acetic acid

HPLC

high-performance liquid chromatography

5-HT

serotonin

5-HTP

5 hydroxy-1-tryptophan

LC

Locus coeruleus

rNS

rostral neostriatum

MRN

midbrain Raphe nuclei region

SN

Substantia nigra

Δ9-THC

Δ9-Tetrahydrocannabinol

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hollister, L. E. 1986. Health aspects of cannabis. Pharmacol. Rev. 38:1–20.PubMedGoogle Scholar
  2. 2.
    Kumar, A. M., Haney, M., Becker, T., Thompson, M. L., Kream, R. M., and Miczeck, K. 1990. Effect of early exposure to Δ-9-tetrahydrocannabinol on the levels of opioid peptides, gonadotropin-releasing hormone and substance P in the adult male rat brain. Brain Res. 525:78–83.PubMedGoogle Scholar
  3. 3.
    Bloom, A. S., and Kiernan, J. 1980. Interaction of ambient temperature with the effect of Δ9-Tetrahydrocannabinol on brain catecholamine synthesis and plasma corticosterone levels. Psychopharmacol. 67:215–219.Google Scholar
  4. 4.
    Johnson, K. M., Dewey, W. L., and Bloom, A. S. 1981. Adrenalectomy reverses the effecst of delta-9-THC on mouse brain 5-hydroxytryptamine turnover. Pharmacol. 23:223–229.Google Scholar
  5. 5.
    Steger, R. W., De Paolo, L., Asch, R. H., and Silverman, A. Y. 1983. Interactions of Δ9-Tetrahydrocannabinol (THC) with hypothalamic neurotransmitters controlling luteinizing hormone and prolactin release. Neuroendocrinol. 37:361–370.Google Scholar
  6. 6.
    Howeltt, A. C., Qualy, J. M., and Khachatrian, L. L. 1986. Involvement of Gi in the inhibition of adenylate cyclase by cannabinoid drugs. Mol. Pharmacol. 29:307–313.PubMedGoogle Scholar
  7. 7.
    Bideaut-Russell, M., Devane, W. A., and Howlett, A. C. 1990. Cannabinoid receptors and modulation of cyclic AMP accumulation in the rat brain. J. Neurochem. 55:21–26.PubMedGoogle Scholar
  8. 8.
    Herkenham, M., Lynn, A. B., Little, M. D., Johnson, M. R., Melvin, L. S., de Costa, B. R., and Rice K. C. 1990. Cannabinoid receptor localization in brain. Proc. Natl. Acad. Sci. U.S.A. 87:1932–1936.PubMedGoogle Scholar
  9. 9.
    Herkenham, M., Lynn, A. B., Johnson, M. R., Melvin, L. S., de Costa, B. R., and Rice, K. C. 1991. Characterization and localization of Cannabinoid receptors in rat brain: A quantitative in vitro autoradiographic study. J. Neurosci. 11:563–583.PubMedGoogle Scholar
  10. 10.
    Herkenham, M., Lynn, A. B., de Costa, B. R., and Richfield, E. K. 1991. Neuronal localization of cannabinoid receptors in the basal ganglia of the rat. Brain Res. 547:267–274.PubMedGoogle Scholar
  11. 11.
    Thomas, B. F., Wei, X., and Martin, B. R. 1992. Characterization and autoradiographic localization of the cannabinoid binding site in rat brain using [3H]11-OH-Δ9-THC-DMH. J. Pharmacol. Exp. Ther. 263:1383–1390.PubMedGoogle Scholar
  12. 12.
    Matsuda, L. A., Lolait, S. J., Brownstein, M. J., Young, A. C., and Bonner, T. I. 1990. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346:561–564.PubMedGoogle Scholar
  13. 13.
    Mailleux, P., Verslijpe, M., and Vanderhaeghen, J-J. 1992. Initial observations on the distribution of cannabinoid receptor binding sites in the human adult basal ganglia using autoradiography. Neurosci. Lett. 139:7–9.PubMedGoogle Scholar
  14. 14.
    Matsuda, L. A., Bonner, T. I., and Lolait, S. J. 1993. Localization of cannabinoid receptor mRNA in rat brain. J. Comp. Neurol. 327:535–550.PubMedGoogle Scholar
  15. 15.
    Kramer, J., and Ben-David, M. 1978. Prolactin suppression by (-)Δ-9-tetrahydrocannabinol (THC): involvement of serotoninergic and dopaminergic pathways. Endocrinol. 103:452–457.Google Scholar
  16. 16.
    Sofia, R. D., Dixit, B. N., and Barry, H. 1971. The effects of Δ9-tetrahydrocannabinol on serotonin metabolism in the brain. Life Sci. 10:425–436.Google Scholar
  17. 17.
    Dewey, W. L. 1986. Cannabinoid pharmacology. Pharmacol. Rev. 38:151–178.PubMedGoogle Scholar
  18. 18.
    Yagiela, J. A., MacCarthy, K. D., and Gibb, J. W. 1974. The effect of hypothermic doses of 1-Δ9-tetrahydrocannabinol on biogenic amine metabolism in selected parts of the rat brain. Life Sci. 14:2367–2378.PubMedGoogle Scholar
  19. 19.
    Taylor, D. A., and Fennessy, M. R. 1979. The effect of Δ9-tetrahydrocannabinol (Δ9-THC) on the turnover rate of brain serotonin of the rat. Clin. Exp. Pharmacol. Physiol. 6:327–334.PubMedGoogle Scholar
  20. 20.
    Ouellet, J., Palic, D., Albert, J. M., and Tetreault, L. 1973. Effect of Δ9-THC on serotonin, MAO and tryptophan hydroxilase in rat brain. Rev. Can. Biol. 23:213–217.Google Scholar
  21. 21.
    Habert, E., Graham, D., Tahraoui, L., Claustre, Y., and Langer, S. Z. 1985. Characterization of [3H]paroxetine binding to rat cortical membranes. Eur. J. Pharmacol. 118:107–114.PubMedGoogle Scholar
  22. 22.
    De Souza, E. B., and Kuyatt, B. L. 1987. Autoradiographic localization of3H-paroxetine-labeled serotonin uptake sites in rat brain. Synapse 1:488–496.PubMedGoogle Scholar
  23. 23.
    Thomas, D. R., Nelson, D. R., and Johnson, A. M. 1987. Biochemical effects of the antidepressant paroxetine, a specific 5-hydroxytryptamine uptake inhibitor. Psychopharmacology 93:193–200.PubMedGoogle Scholar
  24. 24.
    Dewar, K. M., Reader, T. A., Grondin, L., and Descarries, L. 1991. [3H]Paroxetine binding and serotonin content of rat and rabbit cortical areas, hippocampus, neostriatum, ventral mesencephalic tegmentum and midbrain raphe nuclei region. Synapse 9:14–26.PubMedGoogle Scholar
  25. 25.
    Rosenkrantz, H. and Braude, M. C. 1976. Comparative chronic toxicities of Δ9-tetrahydrocannabinol administrated by inhalation or orally to rats. Pages 571–584in Braude, M. C. and Szara, S. (eds), The Pharmacology of Marihuana. Raven Press, New York.Google Scholar
  26. 26.
    Reader, T. A., and Grondin, L. 1987. Distribution of catecholamines, serotonin, and their major metabolites in the rat cingulate, piriform-entorhinal, somatosensory, and visual cortex: a biochemical survey using high-performance liquid chromatography. Neurochem. Res. 12:1087–1097.PubMedGoogle Scholar
  27. 27.
    Reader, T. A., Dewar, K. M., and Grondin, L. 1989. Distribution of monoamines and metabolites in rabbit neostriatum, hippocampus and cortex. Brain Res. Bull. 23:237–247.PubMedGoogle Scholar
  28. 28.
    Bergeron, M., Swain, M. S., Reader, T. A., Grondin, L., and Butterworth, R. F. 1990. Effect of ammonia on brain serotonin metabolism in relation to function in the portacaval shunted rat. J. Neurochem. 55:222–229.PubMedGoogle Scholar
  29. 29.
    Zilles, K. 1985. The Cortex of the Rat. A Stereotaxic Atlas. Berlin, Springer.Google Scholar
  30. 30.
    Paxinos, G., and Watson, C. 1982. The Rat Brain in Stereotaxic Coordinates. Academic Press, Sidney and New York.Google Scholar
  31. 31.
    Mitro, A., and Palkovits, M. 1981. Morphology of the Rat Brain Ventricles, Ependyma, and Periventricular Structures. Karger, Basel.Google Scholar
  32. 32.
    Mellerup, E. T., and Plenge, P. 1986. High affinity binding of3H-paroxetine and3H-imipramine to rat neuronal membranes. Psychopharmacology 89:436–439.PubMedGoogle Scholar
  33. 33.
    Marcusson, J. O., Bergtröm, M., Eriksson, K., and Ross, S. B., 1988. Characterization of [3H]paroxetine binding in rat brain. J. Neurochem. 50:1783–1790.PubMedGoogle Scholar
  34. 34.
    Dewar, K. M., Grondin, L., Carli, M., Lima, L., and Reader, T. A. 1992. [3H]Paroxetine binding and serotonin content of rat cortical areas, hippocampus, neostriatum, ventral mesencephalic tegmentum, and midbrain raphe nuclei region followingp-chlorophenylalanine andp-chloroamphetamine treatment. J. Neurochem. 58:250–257.PubMedGoogle Scholar
  35. 35.
    Hytell, J. 1982. Citalopram-Pharmacological profile of a specific serotonin uptake inhibitor with antidepressant activity. Prog. Neuropsychopharmacol. Biol. Psychiat. 6:277–295.Google Scholar
  36. 36.
    D'Amato, R. J., Largent, B. L., Snowman, a. M., and Snyde, S. H. 1987. Selective labeling of serotonin uptake sites in rat brain by [3H]citalopram contrasted to labeling of multiple sites by [3H]imipramine. J. Pharmacol. Exp. Ther. 242:364–371.PubMedGoogle Scholar
  37. 37.
    Boyson, S. J., McGonigle, P., and Molinoff, P. B. 1986. Quantitative autoradiographic localization of the D1 and D2 subtypes of dopamine receptors in rat brain. J. Neurosci. 6:3177–3188.PubMedGoogle Scholar
  38. 38.
    Diop, L., Gottberg, E., Brière, R., Grondin, L., and Reader, T. A. 1988. Distribution of dopamine D1 receptors in rat cortical areas, neostriatum, olfactory bulb and hippocampus in relation to endogenous dopamine contents. Synapse 2:395–405.PubMedGoogle Scholar
  39. 39.
    Dewar, K. M., and Reader, T. A. 1989. Distribution of dopamine D1 and D2 receptors in rabbit cortical areas, hippocampus, and neostriatum in relation to dopamine contents. Synapse 4:378–386.PubMedGoogle Scholar
  40. 40.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurements with Folin phenol reagent. J. Biol. Chem. 193:265–275.PubMedGoogle Scholar
  41. 41.
    McKay, L., Bradberry, C., and Oke, A. 1984. Ascorbic acid oxidase speeds up analysis for catecholamines, indoleamines and their metabolites in brain tissue using high performance liquid chromatography with electrochemical detection. J. Chromatogr. 311:167–169.PubMedGoogle Scholar
  42. 42.
    Sauvé, Y., and Reader, T. A. 1988. Effects of alpha-methyl-p-tyrosine on monoamines and catecholamine receptors in rat cerebral cortex and neostriatum. Neurochem. Res. 13:807–815.PubMedGoogle Scholar
  43. 43.
    Parent, A., Descarries, L., and Beaudet, A. 1981. Organization of ascending serotonin systems in the adult rat brain. A radioautographic study after intraventricular administration of [3H]5-hydroxytryptamine. Neuroscience 6:115–138.PubMedGoogle Scholar
  44. 44.
    Steinbusch, H. W. M. 1981. Distribution of serotonin-immunoreactivity in the central nervous system of the rat: cell bodies and terminals. Neuroscience 6:557–618.PubMedGoogle Scholar
  45. 45.
    Poddar, M. K., Biswas, B., Ghosh, J. J. 1976. Delta-9-tetrahydrocannabinol and brain biogenic amines, in Drugs and Central Synaptic Transmission (Bradley P. B., and Dhawan B. N., eds), pp 193–199. Macmillan, London.Google Scholar
  46. 46.
    Lin, M. T., Wu, J. J., and Tsay, B. L. 1983. Serotoninergic mechanisms in the rat hypothalamus mediate thermoregulatory responses in rats. Naunyn-Schmiedeberg's Arch. Pharmacol. 322:271–278.Google Scholar
  47. 47.
    Schoepp, D. D., and Azzaro, A. J. 1981. Specificity of endogenous substrates for types A and B monoamine oxidase in rat striatum. J. Neurochem. 36:2025–2031.PubMedGoogle Scholar
  48. 48.
    Banerjee, S. P., Snyder, S. H., and Mechoulam, R. 1975. Cannabinoids: Influence on neurotransmitter uptake in rat brain synaptosomes. J. Pharmacol. Exp. Ther. 194:74–81.PubMedGoogle Scholar
  49. 49.
    Dewey, W. L., Poddar, M. K., and Johnson, K. M. 1979. The effects of cannabinoids on rat brain synaptosomes. In Marijuana: Biological Effects. Analysis, Metabolism, Cellular Responses, reproduction and Brain. Nahas, G. G. and Paton, W. D. M. edrs. Adv. Biosci. 22 & 23, pp 343–349. Pergamon Press, Oxford.Google Scholar
  50. 50.
    Kalén, P., Strecker, R. E., Rosengren, E., and Björklund, A. 1988. Endogenous release of neuronal serotonin and 5-hydroxyindole acid in the caudate-putamen of the rat as revealed by intracerebral dialysis coupled to high-performance liquid chromatography with flourimetric detection. J. Neurochem. 51:1422–1435.PubMedGoogle Scholar
  51. 51.
    Graham, D., Taraoui, L., and Langer, S. Z. 1987. Effect of chronic treatment with selective monoamine oxidase inhibitors and specific 5-hydroxytryptamine uptake inhibitors on [3H]paroxetine binding to cerebral cortical membranes of the rat. Neuropharmacology 26:1087–1092.PubMedGoogle Scholar
  52. 52.
    Vardaris, R. M., Weisz, D. J., Fazel, A., and Rawitch, A. B. 1976. Chronic administration of delta-9-tetrahydrocannabinol to pregnant rats: studies of pup behavior and placental transfer. Pharmacol. Biochem. Behav. 4:249–254.Google Scholar
  53. 53.
    Rodríguez de Fonseca, F., Cebeira, M., Fernández Ruiz, J. J., Navarro, M., and Ramos, J. A. 1991. Effects of pre-and perinatal exposure to hashish extracts on the ontogeny of brain dopaminergic neurons. Neuroscience 43:713–723.PubMedGoogle Scholar
  54. 54.
    Rodríguez de Fonseca, F., Cebeira, M., Hernández, M. L., Ramos, J. A., and Fernández-Ruiz, J. J. 1990. Changes in brain dopaminergic indices induced by perinatal exposure to cannabinoids in rats. Dev. Brain Res. 51:237–240.Google Scholar
  55. 55.
    Martin, B. R., Dewey, W. L., Harris, L. S., and Beckner, J. S. 1977.3H-Delta-9-tetrahydrocannabinol distribution in pregnant dogs and their fetuses. Res. Commun. Chem. Path. Pharmacol. 17:457–470.Google Scholar
  56. 56.
    Jakubovic, A., Hattori, T., and McGeer, P. L. 1973. Radioactivity in the suckled rat after giving14C-tetrahydrocannabinol to the mother. Eur. J. Pharmacol. 22:221–223.PubMedGoogle Scholar
  57. 57.
    Lidov, H. G. W., and Molliver, M. E. 1981. An immunohistochemical study of serotonin neuron development in the rat: ascending pathways and terminal fields. Brain Res. Bull. 8:389–430.Google Scholar
  58. 58.
    Akbari, H. M., Kramer, H. K., Whitaker-Azmitia, P. M., Spear, L. P., and Azmitia, E. C. 1992. Prenatal cocaine exposure disrupts the development of the serotoninergic system. Brain Res. 572:57–63.PubMedGoogle Scholar
  59. 59.
    Barlow, R. B. 1983. Biodata Handling with Microcomputers. Elsevier Science Publishers, Amsterdam.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Francisco Molina-Holgado
    • 1
  • Eduardo Molina-Holgado
    • 2
  • María L. Leret
    • 1
  • María I. González
    • 1
  • Tomás A. Reader
    • 2
  1. 1.Departamento de Biología Animal II, Fisiología Animal, Facultad de Ciencias BiológicasUniversidad Complutense de MadridMadridSpain
  2. 2.Centre de recherche en sciences neurologiques, Département de physiologie, Faculté de MédecineUniversité de MontréalMontréalCanada

Personalised recommendations